
CS3213 Project – Week 7
More Testing | 02-03-2022

❏ Recap: Equivalence Class Analysis
❏ Testing - Best Practices
❏ Introduction to Debugging

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Short Announcements

2yannic@comp.nus.edu.sg

q LumiNUS > Survey > Presentations in Week 13
q So far: 4 responses.
q Please add you availability so that we can plan accordingly.

q Checkstyle in Projects
q Version 8.44, google_checks.xml

https://checkstyle.sourceforge.io/google_style.html

q Use IDE plugin to use checkstyle
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

q or use the jar to run checkstyle from the command line
https://github.com/checkstyle/checkstyle/releases/tag/checkstyle-8.44

java -jar checkstyle-8.44-all.jar -c google_checks.xml <project folder>

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

https://checkstyle.sourceforge.io/google_style.html
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
https://github.com/checkstyle/checkstyle/releases/tag/checkstyle-8.44

Equivalence Class Analysis (2/2)

3yannic@comp.nus.edu.sg

q Procedure (attributed to [Myers, 1979]): Equivalence Class Partitioning
1. Identify: input variables, equivalence classes for valid and invalid inputs
2. Divide classes further intuitively, if necessary
3. Select input data for each class, determine expected outcomes

q The equivalence classes are to be numbered unambiguously. The generation of
test cases from the equivalence classes requires two rules:
q The test cases for valid equivalence classes are formed by selecting test data from as

many valid equivalence classes as possible.
q The test cases for invalid equivalence classes are formed by selecting a test data from

an invalid equivalence class. It is combined with values taken exclusively from valid
equivalence classes.

q Often used: Test of equivalence class boundaries (Boundary Value Analysis).

Recap

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Equivalence Class Partitioning
(Example 2/4)

4yannic@comp.nus.edu.sg

q A program to calculate the factorial of n.
q A program that is to calculate the factorial of n must reject (1) negative numbers,

(2) real fractions, (3) numbers whose factorial is too large (n≥13), and (4)
syntactically incorrect inputs. Special case: 0!

natural number

other input

natural number
but too large

(≥13)

Refinement
negative number

non-integer

syntactical
incorrect

=0
natural number

<13

results in
6 classes

Recap

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Boundary Value Analysis
(Example 5/5)

5yannic@comp.nus.edu.sg

natural number
but too large

(≥13)

negative number
non-integer

syntactical
incorrect

=0
natural number

<12

Class Input Expected Outcome
Negative number -5 Error message
Non-integer 3.14 Error message
Too large number 100 Error message
Syntactical Incorrect input “ABC” Error message
Normal/expected input 7 5040
Zero 0 1
Boundary Value 12 479001600
Boundary Value -1 11 39916800
Boundary Value +1 13 Error message

=12

boundaries

Recap

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

❔Exercise: Equivalence Class Testing

6yannic@comp.nus.edu.sg

A program for the warehouse management of a building materials store has an
input option for the registration of deliveries. If wooden boards are delivered, the
type of wood is entered. The program knows the wood types oak, beech and
pine. Furthermore, the length in centimeters is specified, which is always between
100 and 500. A value between 1 and 9999 can be entered as the delivered
number of items. In addition, the delivery is given an order number. Each order
number for wood deliveries starts with the letter “H”.

(a) Derive equivalence classes using the above specification. Note:
• For each of the four function parameters there exists at least one valid

and one invalid equivalence class.
• You can assume that type conformity of the function parameters is

guaranteed, i.e., invalid equivalence classes for non-type conform input
values need not be considered.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

❔Exercise: Equivalence Class Testing

7yannic@comp.nus.edu.sg

(b) Now derive a minimal set of test cases so that each equivalence class is
tested by at least one representative. For this example, it is okay to ignore
the expected outcome and only name the inputs for each test case. The
expected outcome cannot be inferred from the specification above.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

❔What are the attributes of a
“good” Test Case?

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Testing – Best Practices (1/2)

9yannic@comp.nus.edu.sg

q Test cases should be independent!
q The JUnit execution model executes test cases in arbitrary order (unless explicitly

defined).

q Use @Before.. Annotations to define test case preparations! Do not assume that
another test case already created some sort of test data or program state.

q Dependent test cases can cause flaky tests: sometimes they pass, sometimes they
fail, depending on the test execution order. General reasons for flaky tests:

q an issue with the test itself
q some external factor compromising the test results
q an issue with the newly-written code

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. “IFixFlakies: a framework for automatically fixing order-dependent flaky tests”. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2019.
Wing Lam, Reed Oei, August Shi, Darko Marinov and Tao Xie, "iDFlakies: A Framework for Detecting and Partially Classifying Flaky Tests”.12th IEEE Conference on
Software Testing, Validation and Verification (ICST), 2019.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Testing – Best Practices (2/2)

10yannic@comp.nus.edu.sg

q One test case for one feature (à Single Responsibility for Tests).
Keep things simple!

q 5LOC Rule: Strive to write test cases 5LOC long.
q Choose meaningful test method names!
q Use same package structure as for source code.

à Test code is separate, but you can access methods with package accessibility

q Test cases should have the end user or defined requirements in mind.
q Peer review is important!

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

(un)Testable Code (1/3)

11yannic@comp.nus.edu.sg

Based on “Guide: Writing Testable Code” written by Google developers
http://misko.hevery.com/code-reviewers-guide/

Flaw #1 – Constructor does Real Work
“When your constructor has to instantiate and initialize its collaborators, the result
tends to be an inflexible and prematurely coupled design. Such constructors shut
off the ability to inject test collaborators when testing.”
q violates the Single Responsibility Principle
q testing directly is difficult

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

http://misko.hevery.com/code-reviewers-guide/

12yannic@comp.nus.edu.sg

(based on “Guide: Writing Testable Code” – http://misko.hevery.com/code-reviewers-guide/)

Before: Hard to Test
// Basic new operators called directly in the
// class’ constructor.

public class House {
Kitchen kitchen = new Kitchen();
Bedroom bedroom;

public House() {
bedroom = new Bedroom();

}

// ...
}

// An attempted test that becomes pretty hard

public class HouseTest {

@Test
public void testThisIsReallyHard() {
House house = new House();

// Darn! I'm stuck with those Kitchen and
// Bedroom objects created in the
// constructor.

}
}

After: Testable and Flexible Design

public class House {
Kitchen kitchen;
Bedroom bedroom;

public House(Kitchen k, Bedroom b) {
kitchen = k;
bedroom = b;

}
// ...

}

// New and Improved is trivially testable, with any test-double
// object.
public class HouseTest {

@Test
public void testThisIsEasyAndFlexible() {
Kitchen dummyKitchen = new DummyKitchen();
Bedroom dummyBedroom = new DummyBedroom();

House house = new House(dummyKitchen, dummyBedroom);

// Awesome, I can use test doubles that are lighter weight.
}

}

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

http://misko.hevery.com/code-reviewers-guide/

(un)Testable Code (2/3)

13yannic@comp.nus.edu.sg

Flaw #2 – Digging into Collaborators
“If you have to test a method that takes a context object, when you exercise that
method it’s hard to guess what is pulled out of the context, and what isn’t cared
about.”

Example violations:
getUserManager().getUser(123).getProfile().isAdmin()
à all you need to know if the user is an admin
context.getCommonDataStore().find(1234)
à no need to have the complete data store object…

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

14yannic@comp.nus.edu.sg

(based on “Guide: Writing Testable Code” – http://misko.hevery.com/code-reviewers-guide/)

Before: Hard to Test
public class SalesTaxCalculator {
TaxTable taxTable;
SalesTaxCalculator(TaxTable taxTable) {
this.taxTable = taxTable;

}

float computeSalesTax(User user, Invoice invoice) {
Address address = user.getAddress();
float amount = invoice.getSubTotal();
return amount * taxTable.getTaxRate(address);

}
}

public class SalesTaxCalculatorTest {
// ...

SalesTaxCalculator calc =
new SalesTaxCalculator(new TaxTable());

Address address = new Address("1600 Amphitheatre");
User user = new User(address);
Invoice invoice = new Invoice(1, new ProductX(95.00));

assertEquals(0.09,
calc.computeSalesTax(user, invoice), 0.05);

// ...
}

After: Testable and Flexible Design
public class SalesTaxCalculator {
TaxTable taxTable;
SalesTaxCalculator(TaxTable taxTable) {
this.taxTable = taxTable;

}

float computeSalesTax(Address address, float amount) {
return amount * taxTable.getTaxRate(address);

}
}

public class SalesTaxCalculatorTest {
// ...

SalesTaxCalculator calc =
new SalesTaxCalculator(new TaxTable());

Address address = new Address("1600 Amphitheatre");

assertEquals(0.09,
calc.computeSalesTax(address, 95.00), 0.05);

// ...
}

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

http://misko.hevery.com/code-reviewers-guide/

(un)Testable Code (3/3)

15yannic@comp.nus.edu.sg

Flaw #3 – Brittle Global State & Singletons
“The problem with using a Singleton is that it introduces a certain amount of
coupling into a system — coupling that is almost always unnecessary. …
[U]nless you change your design, you are forced to rely on the correct behavior of
the Singleton in order to test any of its clients.”

[J.B. Rainsberger, Junit Recipes, Recipe 14.4]

Flaw #4 – Class Does Too Much
à violates the Single Responsibility Principle

q Hard to debug
q Hard to test
q Non-extensible system

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

16yannic@comp.nus.edu.sg

Testable Code & Writing Unit Tests
– Closing Remarks
q Easy to write. It should be easy to implement unit test without enormous effort.
q Readable. With a good unit test, you can fix a bug without actually debugging

the code!
q Reliable. Unit tests should fail only if there’s a bug in the system under test.

Good unit tests should be reproducible and independent from external factors
such as the environment or running order.

q Fast. Running regression test suites should be feasible.
q Truly unit, not integration. Eliminate the influence of external factors.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Test Driven Development (TDD)

17yannic@comp.nus.edu.sg

q Refers to a style of software development that focuses on testing.
q The three core tasks of coding, testing and design are carried out in an

interactive manner.
q The procedure described below maps the simple rules of Test-Driven

Development in an incremental/iterative process for the implementation of one
feature.

Based on Broy and Kuhrmann.
“Introduction to Software
Engineering” (Xpert.press), 2021.

Write/Modify
Test Case

Execute Test
Case

Implement/Modify
Code

Execute Test
Case

Clean Code
(Refactoring)

[test fails]

[test successful]
[finished]

[test
successful]

[at least one
failing test]

Recap

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Three Laws of TDD (by Kent Beck)

18yannic@comp.nus.edu.sg

Rule 1:
You may not write production code until you have
written a failing unit test.

Rule 2:
You may not write more of a unit test than is sufficient
to fail, and not compiling is failing.

Rule 3:
You may not write more production code than is
sufficient to pass the currently failing test.

K. Beck. “Test Driven Development: By Example.” Addison-Wesley Longman, 2002.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

TDD – Implications

19yannic@comp.nus.edu.sg

R. C. Martin. “Clean Code: A Handbook of Agile Software Craftsmanship.” Prentice Hall, 2008. 46.

It is important to note that it is explicitly not in the spirit of TDD to create all test cases before starting to write
production code. “Clean Code” recommends writing tests and production code alternately and switching between
these two activities in "micro-iterations" lasting only a few minutes.

Change of perspective

Testability

Documentation

When creating test cases, developers become "users" of
the code, which means that developers now have to deal
with the interface of the respective module.

The tests can also be seen as part of the documentation of
the software. E.g., how to instantiate objects, how to use
software and components.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

!
Try Test Driven Development (TDD)
yourself!

20yannic@comp.nus.edu.sg

We can discuss your experience in the lab
and at the end of the lecture!

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Debugging – History

21yannic@comp.nus.edu.sg

9.9.1945
15:45

q A moth in the Mark II
computer causes errors in
Relay No. 70, Panel F.

q Mrs. Grace Murray Hopper
removes the error and
documents it in the log
book: "First actual case of
bug being found."

q "open"-visible error!
à Elimination is easy!

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Debugging – From Error to Failures

22yannic@comp.nus.edu.sg

The issue of debugging is to
q relate an observed failure to a fault/defect and
q to remove the defect such that the failure no

longer occurs.

Debugging Steps:
q Execution of tests!
q Fault Localization!
q Identify possible fixes.
q Choose the best fix.
q Implement the best fix!

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Recap

Debugging – Scientific Method

23yannic@comp.nus.edu.sg

1. Observe the misbehavior.
2. Create a hypothesis about the cause of the misbehavior.
3. Use the hypothesis for predictions.
4. Test the hypothesis with experiments or observations and refine the hypothesis

based on the results.
5. Repeat steps 3 and 4 until the cause is found.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Debugging – Difficulties

24yannic@comp.nus.edu.sg

q Symptom and failure cause can be far apart.
q Symptoms of one error may be hidden by other errors.

q Fault masking: “An occurrence in which one defect prevents the detection of another
[IEEE 610]

q Symptoms of one error may disappear or change due to correction of another error.

„Debugging is one of the more frustrating parts of programming. It
has elements of brain teasers, coupled with the annoying
recognition that you have made a mistake.“

B. Shneiderman: Software Psychology. Winthorp Publishers, 1980.

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Debugging – Techniques

25yannic@comp.nus.edu.sg

q Brute Force
Collect all data about the program execution. Try to find the error in it.

q Cause Elimination
The test case is reduced in size until only a small part of the program is executed.
The error "must" be located in this part.

q Backtracking
The possible program execution paths are traced back from the occurrence of the
symptoms to the program start. The error "must" be on one of the paths.

Tools can be used to collect the needed data (executed program parts, program paths,
program state, ...): Coverage analysis, Interactive Debugger, Trace Generator

à see Lab sessions in Week 8!

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

Next Week (Project-Part) – Week 8:
Debugging
Ø More Debugging (TRAFFIC, Slicing, Delta Debugging)
Ø Assignment 8: Final Code Submission + Presentations

Conclusion
❏ Testing is no late phase in the development process!
❏ Debugging is time-consuming, but can be aided by tools and

techniques. Next time we will explore this more deeply.

26yannic@comp.nus.edu.sg

+ Midterms

CS3213 FSE (Project-Part) – Week 7 – Advanced Testing

