% National University
of Singapore

CS3213 Project - Week 8

Debugging | 09-03-2022

Based on slides/lectures by

Abhik Roychoudhury (National University of Singapore),
Lars Grunske (Humboldt-Universitét zu Berlin), and
Andreas Zeller (CISPA, Saarland University).

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Debugging - History 9.9.1945

15:45

" | QO A moth in the Mark ||
O sto ¢ : i P :
/foo i M}J“”k ¢ 3 $ e S computer causes errors in
o 030 he -ne EFSoeTEG) =b8) 74/5 725055 () Relay No. 70, Panel F.
033 ’Pl:z > 2.1304206YS
i 2430L7¢ws . Mrs. Grace Murray Hopper
Fdons -2 o~ 033 ot Jeod N
o i ;j:'J removes the error and
e 1SRk il el/,}»y»ﬂ So documents it in the log
1575 | LG ;ﬁﬁjﬁ(ﬁ.} & book: "First actual case of
bug being found.”
1S4y | S 8 @akaf*7o Cane| F J J
ERaE" ot feloy 3 "open"-visible error!

- Elimination is easy!

rFoe Gadampad shadks) o i e

1200 | cleadd Jom .

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging 2

Debugging - From Error to Failures

| Recap
dynamic

The issue of debugging is to Failure
 relate an observed failure to a fault/defect and SR .
Q to remove the defect such that the failure no e

(Error State)
longer occurs.

Error/Mistake £

: . Created b
Debugging Steps: Deejefopery
Execution of tests!
Fault Localization!

Identify possible fixes.
Choose the best fix.
Implement the best fix! that occurs during runtime

in the program

D000 0

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging 3

Debugging: How is it done?

d Debugging printouts (printf(), print, output)
4 Interactive debugger

d Breakpoints

d Single stepping
U Problems

d Manual work

d Many Data to observe

 Single Steps and Executions

annic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Debugging Statements
~

{ Can Debugging statements be harmful? }

The Devil's Guide to Debugging «»

(from Code Complete by Steve McConnell)

d Find the error by guessing.

O Scatter print statements randomly throughout the code.

4 If the print statements do not reveal the error, change code until something
appears to work.

U Do not save the original version of the code and do not track changes.

 Debugging by superstition.

d Why blame yourself when you can blame the computer, the operating system, the
compiler, the data, other programmers (especially those ones who write library
routines!), and best of all, the stupid users!

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

The Devil's Guide to Debugging .-

(from Code Complete by Steve McConnell)

 Don't waste time trying to understand the problem.

d Why spend an hour analyzing the problem (in your head and on paper) and
evaluating possible solutions or methodologies when you can spend days trying
to debug your code?

L Fix the error with the most obvious fix.

d For example, why try to understand why a particular case is not handled by a
supposedly general subroutine when you can make a quick fix?

- Obviously, not the best approaches and ideas!

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Debugging - Difficulties

d Symptom and failure cause can be far apart.

d Symptoms of one error may be hidden by other errors.

O Fault masking: “An occurrence in which one defect prevents the detection of another
[IEEE 610]

d Symptoms of one error may disappear or change due to correction of another error.

,Debugging is one of the more
frustrating parts of programming. It
has elements of brain teasers,
coupled with the annoying
recognition that you have made a
mistake.”

B. Shneiderman: Software Psychology. Winthorp
Publishers, 1980.

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Debugging — Approaches

 Brute Force
Collect all data about the program execution. Try to find the error in it.

d Cause Elimination
The test case is reduced in size until only a small part of the program is executed.

The error "must” be located in this part.

1 Backtracking
The possible program execution paths are traced back from the occurrence of the
symptoms to the program start. The error "must” be on one of the paths.

Tools can be used to collect the needed data (executed program parts, program paths,
program state, ...): Coverage analysis, Interactive Debugger, Trace Generator

- see Lab sessions in Week 8!

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

TRAFFIC Principle

Debugging should follow the TRAFFIC principle:
d Track the problem

d Reproduce — Requires control over data and environment.

d Automate — Write a simple test case that exercises the problem.

(1 Focus - Focus your effort on the most likely origin.

1 Isolate — Isolate the fault (see scientific method of debugging, next slide).

d Correct - Fix the fault and verify that the failure no longer occurs.
Check for regression errors.

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

d Find Origins — Where does the failure originate? Locate likely fault locations.

10

Debugging - Scientific Method

Observe the misbehavior.
Create a hypothesis about the cause of the misbehavior.

Use the hypothesis for predictions.

w0 =

Test the hypothesis with experiments or observations and refine the hypothesis
based on the results.

5. Repeat steps 3 and 4 until the cause is found.

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

11

Debugging - Techniques

1 Reduce the input: Delta Debugging
Simplifying and Isolating Failure-Inducing Input

1 Reduce the program: Program Slicing
Isolating the relevant program statements/locations to focus debugging effort.

O Dynamic Slicing
O Static Forward and Backward Slicing
d Relevant Slicing

 Identify faulty statements: Statistical Fault Localization
Ranking suspicious program statements.

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

12

Reducing the input

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002 1

Simplifying and Isolating Failure-Inducing Input

Andreas Zeller, Member, IEEE Computer Society, and Ralf Hildebrandt

Abstract— Given some test case, a program fails. Which circumstances of
the test case are responsible for the particular failure? The Delta Debugging
algorithm generalizes and simplifies some failing test case to a minimal test
case that still produces the failure; it also isolates the difference between a
passing and a failing test case.

In a case study, the Mozilla web browser crashed after 95 user actions.
Our prototype implementation automatically simplified the input to 3 rel-
evant user actions. Likewise, it simplified 896 lines of HTML to the single
line that caused the failure. The case study required 139 automated test
runs, or 35 minutes on a 500 MHz PC.

Index Terms —automated debugging, debugging aids, testing tools, com-
binatorial testing, diagnostics, tracing.

I. INTRODUCTION

Often people who encounter a bug spend a lot of time
investigating which changes to the input file will make the bug
go away and which changes will not affect it.

— Richard Stallman, Using and Porting GNU CC

o A bug report should be as specific as possible, such that the
engineer can recreate the context in which the program failed.

¢ On the other hand, a test case should be as simple as possible,
because a minimal test case implies a most general context.
Thus, a minimal test case not only allows for short problem de-
scriptions and valuable problem insights, but it also subsumes
several current and future bug reports.

The striking thing about test case simplification is that no one
so far has thought to automate this task. Several textbooks and
guides about debugging are available that tell how to use binary
search in order to isolate the problem—based on the assump-
tion that tests are carried out manually, too. With an automated
test, however, we can automate this simplification of test cases,
and we can automatically isolate the difference that causes the
failure.

Simplification of test cases. Our minimizing delta debugging
algorithm ddmin is fed with a failing test case, which it sim-

S LY PN N

s bnndlon Ve o6 seslonan o =l bt e

yannic@comp.nus.edu.sg

CS3213 FSE (Project-Part) — Week 8 — Debugging

WINNER OF JOLT PRODUCTIVITY AWARD

WHY PROGRAMS FAIL

A GUIDE TO SYSTEMATIC DEBUGGING
SECOND EDITION

dpunkt.verlag

Andreas Zeller and Ralf Hildebrandt, "Simplifying and isolating failure-inducing input," in IEEE Transactions on Software Engineering, vol. 28, 2002.
Andreas Zeller. “Why programs fail: a guide to systematic debugging”. Elsevier, 2009.

13

Delta Debugging

d Goal: Figure out a minimal cause that ‘explains’ an error!

U Use a variation on binary search: narrow the difference between passing and failing
Inputs

Simplifying Isolating

Failure Cause 0\
O : Failure Cause

v

“Rather than only minimizing the failing input, delta
debugging (dd) also maximizes the passing input until a
minimal failure-inducing difference is obtained.”

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

14

Delta Debugging

d Check: https://www.debuggingbook.org

 Applications: Delta Debugging can isolate failure causes
4 in the (general) input
4 in the version history
4 in thread schedules

d Every such identified cause implies a fix — but not necessarily a correction.

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

15

https://www.debuggingbook.org/

Reducing the program

1 Program slicing is the computation of the subset of program
statements (- the program slice).

 The program slice includes statements that may affect the values at
some point of interest (~ the slicing criterion)

d Concept: Select a line to be considered and hide all irrelevant lines.

d Dynamic Slicing: slice for a particular program execution
- dynamic dependencies

 Static Slicing = static dependencies
0 What is affected by this slicing criterion? (forward)

0 What is influenced the value of this variable? (backward)

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

16

Dynamic Slicing

 Slice backward from the erroneous
output of the program

d Dynamic slice includes the closure of

J Data dependencies and
[Control dependencies

Control

Dependenc

For our test case with a=2, the
value of variable x printed in
ine 6 is unexpected.

1 b=2;

2 y=1,

3 If(a>1){

4 if (b>1){
) X=2;

)

6 printf (“%d”, x);

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Data
Dependence

Slicing
Criterion

17

Dynamic SllClng (applied)

yannic@comp.nus.edu.sg

C

3.

5

savedValue = value;

}

else{

}

this.runningVersion = runningVersion;

(CS3213 FSE (Project-Part) — Week 8 — Debugging

runningVersion=false

Slicing Criterion

18

Dynamic Slicing — Problems

1 Huge overheads: Backwards slicing requires trace storage.
O Dynamic Slice is still too large ...

... for human comprehension

Hierarchical Slicing: operates on higher abstractions, e.g.,
components, packages, classes, ...

Developer/User can zoom in and investigate!

Tao Wang and Abhik Roychoudhury. “Hierarchical dynamic slicing”. In Proceedings of the 2007 international symposium on Software testing and
analysis (ISSTA), 2007.

J. Gao, Y. Liu and B. Li, "Hierarchical Slicing Object-Oriented Programs for Debugging," 2009 International Conference on Information Engineering and
Computer Science, 2009.

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging 19

Static Slicing »

If dynamic slice computation and traversal becomes manageable

d We can look beyond dynamic slices.

J We can look at errors which are not captured in dynamic slices.

read (max) ;

What is affected by
this assignment?

—> static dependencies, does not depend
on specific test case

\4

int a = 1;
int b
int i
int fak
do {
if (1 > 2) {
int tmp = a;
b =hb + a;
a = thp;

1:
1:
=1;

H
fak = fak * 1i:;
i++;

} while (i <= max):;

print (n) ;
print () ;

print (fak) ;

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

What is influenced
the value of this
variable?

20

Static Slicing .-

Backward Slice

read (max) ;
int a = 1;
- int b = 1;
Forward Slice int i = 1;
int fak = 1;
: : do {
What is affected by this if (i > 2)
- 2 int tmp = a;
assignment: b= b oo
a = twp:
read (rax) ; ¥
int a = 1; fak = fak * 1i;
Snt——3 i1++;
T R y while (i <= max):;
printin);
print (b))
print (fak)

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

What influenced the
value of this variable?

read(max) ;

—— A - —

A AL =

—— Y- —

int 1 = 1;
int fak =

Do
-~

-—
L

| SLC
|
| ek v
¢t W ocr o

t

s
~

0o

fak =

} while (i <= max):

fak * 1i;

21

Static vs Dynamic Slicing s

Static Slicing Dynamic Slicing
 source code d a particular execution
 statement 4 statement instance
 static dependence d dynamic dependence
1 b=1;
2 If (a>1)
3 x=1;
4 else
) X=2;: ")
6 prlntf (“o/od”, X); Slicing Criterion

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

Limitations of Dynamic Slicing 7

' t 2 e
INPUL. a=
1 b=1: P |)
What is the content of
2 x=1,; the dynamic slice?
3 If (@>1) -’

4 if (b>1){ Let’s assume that the error is\
5 x=2" that line 5 is not executed.
’ What can be the cause and
} why Is it problematic wrt
dynamic slice?
} N y

6 printf (“%d”, x);

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging 23

Static vs Dynamic Slicing .

1 b=1;

2 x=1:

3 If (a>1)

4 if (b>1)

9 X=2;
}

}
6 printf ("%d”, x);

iInput: a=2

24

Static vs Dynamic Slicing .

iInput: a=2

.,

Source of Failure/'

Dynamic Slice

Execution is omitted }

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

25

Potential Dependence .-

iInput: a=2

Ce }<

(“%d”, Xx);

yannic@comp.nus.edu.sg

Potential Dependence .-

iInput: a=2

Potential

Dependence Dynamic Data

Dependence

S

printf (“%d", x);

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

27

Slicing Example Result

Static Dynamic Relevant

1 1 input: a=2
2 2 2
3
4 4
5 S X=2
}
}

Statistical Fault Localization -
Tarantula Laied()

suspiciousness(s) = passed(s) Failed(s)
total passed ° total failed

d ,fuzzy slices”
d Probability that the line of code will lead to the misbehavior

d Lines of code that are often executed on failed tests are suspicious.

James A. Jones, Mary Jean Harrold, John T. Stasko: Visualization of test information to assist fault localization. ICSE 2002: 467-477
James A. Jones, Mary Jean Harrold: Empirical evaluation of the tarantula automatic fault-localization technique. ASE 2005: 273-282

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

29

Dynamic Slicing - Example

Test Cases
mid(){ 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3
Int x,y,z,m;
read(“Enter 3 numbers:”, x,y,z); ° ° ° ° ° °
m=z; ° ° ° ° ° °
if(y < z) ° ° ° ° ° °
if(x <y) ° ° ° °
m=y; °
else if (x< z) ° ° °
m=y; // bug o o
else ° °
if (x>vy) ° °
m=y,;
elseif (x> z) °
m=x;
print(“Middle number is:”, m); ° ° ° ° ° °
}
Pass Status P P P - P F

yannic@comp.nus.edu.sg

(CS3213 FSE (Project-Part) — Week 8 — Debugging

Recap

30

Statistical Fault Localization

failed(s)

total failed
passed(s) + failed(s)
total passed ' total failed

suspiciousness(s) =

mid(){ 335 | 1,23 | 321 | 555 | 534 | 213 | suspiciousness
Int x,y,z,m;
read(“Enter 3 numbers:”, x,y,z); ° ° ° ° ° ° 0.5
m = z; ° ° ° [° ° 0.5
if(y < 2) ° ° ° ° ° ° 0.5
if(x < y) ° ° ° [0.625
m=y; ° 0.0
else if (x< z) ° ° ° 0.714
m =vy; // bug ° ° 0.833
else [[0.0
if (x>vy) ° ° 0.0
m=y; ° 0.0
elseif (x> z) ° 0.0
m = X; -
print(“Middle number is:”, m); ° ° ° ° ° ° 0.5
}
Pass Status P P P P P F

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

uspicioushness
cores

Can use several other available
metrics for ranking statements,
e.g. Ochiai metric

fail(s)

Score(s)=

\/alIfail*(fail(s)+pass(s))

A model for spectra-based software diagnosis, Naish et. al., TOSEM 20(3), 2011.

yannic@comp.nus.edu.sg

Name Formula Name Formula
ey Qe f
Jaccard rrrar—r— Anderberg a7 e o]
. 2aef . 2aef
Serensen-Dice Torr Tanr Ta Dice o T T
. ef . 1 (Gef Gef)
2 - et i —
Kulezynskil T Kulczynski2 2 \ Geft0ns ' Gef taep
ef Gof +anp —Qnf —Gep
< — —_ = T
Russell and Rao e Hamann Gef Faing Taep Tnp
. . Qef +anp 2la.s+anp)
Simple Matching T r—— Sokal T o Ta Ta FamgH oy Toup
Qef +anp 9 e f
M1 o T M2 e g ¥ By Taeg]
. Qef +anp 20, f—Qpf —Gep
= prr— T Ay —— f =y
Rogers-Tanimoto o T s Tocs) Goodman e Fanr o
Hamming etc. A.f +ap Euclid fO.7 + Oy
= ! ' v el P
Ochiai —— || Overla . L A—
A/ Bef +anf Xaef +aep) P minigeys.anf Gep
Sef
Tarantula — Zoltar = s
Bef +anj ' Geptanp ef +anf +aep+—g
Qe f Qep T
Amp]e pray=ward GepTOnp W Ongl acf
Wong2 Qef —Qep
ap ifa,, =2
Wong3 a.f —h, whereh={ 2+ 0.1(a,, — 2) if2 <a, <10
2.8 4 0.001(a,, — 10) ifa,, > 10
Ochiai2 B

A/ Bef +ep X anp +anf e f+anf Xep+ang)

Geometric Mean

Gef Gup—anf Gep
A/ \Qef +Gep X anp+anf ¥ Qe f+Gnf Xaep+anp)

Harmonic Mean

(e fOnp—CnfOep K Qe f Hlep RO np+Onf) A f 0 f Kaep+Gnp))

(@ef +0ep X np+-0nf Naef +-0nf Nep+Qnp)

Arithmetic Mean

24, fanp —2anf Gep
(Gef +ep ¥ anp +0nf 1+ ef +Gnf X Gep+anp)

2a fanp —2anf aep

Cohen (Qef +aep ¥anp +0ep 1T Taer Tnf NonF Tong)

SCOtt 40‘-{‘2"31 _"a.':falp_ 70,1"‘ —dep B
(2aef +anf +aep N 2anp+anf +aep)

Fleiss 44 f Gnp —4anf Gep —(anf —Gep 1

_ (20,5 +apf +aep H{ 2anp +anf +aep)

1 Qef anp)

RogOt] 2 (2ae f +anf +aep T —

Rogot2 1 Oef Qe f [O,y

- 4 ar,’ *acp acf +an,' al'lp*acp anp +an,'

CS3213 FSE (Project-Part) — Week 8 — Debugging

32

Visualizing Fault Localization.

For a program line s: Brightness represents the
confidence of the color
assignment to the program
ine s

Color describes the
pass/fail of test cases that
executed the program line s

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

33

Visualizing Fault Localization.,

Test Cases
mid(}{ 3,3,5 1,2,3 3,21 5,5,5 5,3,4 21,3
Int X,y,z,m;
[] [} [} [} [} [}
[] [} [} [} [} [}
[] [} [} [} [} [}
if(x <y) ° ° ° °
[}

else if (x< z) ° ° °
[] [}

else ° °

if (x >y) ° °

[}
[] [} [} [} [} [}
Pass Status P P P P P F

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

Visualizing Fault Localization

1 SeeSoft view!

d Each pixel represents a char in
the program file

mid(){
int x,y,z,m;

ifx<y) s 0=

else if (x< z)

else
if (x>y)

yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) — Week 8 — Debugging

Debugging - Closing Remarks

1 Before fixing, be sure to understand the problem (cause-effect chain).
Understand the program, not just the problem (effect of your change).

Before you make a change to the code, be confident that it will work!

Never start changing code before saving the original. Always use version control!
Wishful thinking doesn’t fix bugs! (think hard about the solution)

Use the most general fix available.

Do not attempt to fix multiple defects at the same time

I Ny Iy I B B N

After fixing,

1 make sure the fix solves the problem,

1 make sure no new defects are introduced,
 you might want to learn from it, and

1 look for similar defects!

yannic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

36

Conclusion

1 Debugging is time-consuming, but can be aided by tools and
techniques.

1 Note: quality cannot be introduced by testing...
- analytical vs constructive methods!

Next Week (Project-Part) — Week 9:
Static Analysis: Techniques & Tools

» Finishing Debugging (if remaining items) and Recap.
» Static Analysis: IDE, Checkstyle, FindBugs/Spotbugs, Error Prone, Infer

» Assignment 8: Final Code Submission + Presentations

annic@comp.nus.edu.sg (CS3213 FSE (Project-Part) — Week 8 — Debugging

37

