
CS3213 Project – Week 8
Debugging | 09-03-2022

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Based on slides/lectures by
Abhik Roychoudhury (National University of Singapore),
Lars Grunske (Humboldt-Universität zu Berlin), and
Andreas Zeller (CISPA, Saarland University).

Debugging – History

2yannic@comp.nus.edu.sg

9.9.1945
15:45

q A moth in the Mark II
computer causes errors in
Relay No. 70, Panel F.

q Mrs. Grace Murray Hopper
removes the error and
documents it in the log
book: "First actual case of
bug being found."

q "open"-visible error!
à Elimination is easy!

CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging – From Error to Failures

3yannic@comp.nus.edu.sg

Recap
The issue of debugging is to
q relate an observed failure to a fault/defect and
q to remove the defect such that the failure no

longer occurs.

Debugging Steps:
q Execution of tests!
q Fault Localization!
q Identify possible fixes.
q Choose the best fix.
q Implement the best fix!

CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging: How is it done?
q Debugging printouts (printf(), print, output)
q Interactive debugger

q Breakpoints
q Single stepping

q Problems
q Manual work
q Many Data to observe
q Single Steps and Executions

4yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

❔

5yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging Statements
Can Debugging statements be harmful?

The Devil's Guide to Debugging (1/2)
(from Code Complete by Steve McConnell)

q Find the error by guessing.
q Scatter print statements randomly throughout the code.
q If the print statements do not reveal the error, change code until something

appears to work.
q Do not save the original version of the code and do not track changes.

q Debugging by superstition.
q Why blame yourself when you can blame the computer, the operating system, the

compiler, the data, other programmers (especially those ones who write library
routines!), and best of all, the stupid users!

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

The Devil's Guide to Debugging (2/2)
(from Code Complete by Steve McConnell)

q Don't waste time trying to understand the problem.
q Why spend an hour analyzing the problem (in your head and on paper) and

evaluating possible solutions or methodologies when you can spend days trying
to debug your code?

q Fix the error with the most obvious fix.
q For example, why try to understand why a particular case is not handled by a

supposedly general subroutine when you can make a quick fix?

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Obviously, not the best approaches and ideas!

Debugging – Difficulties

8yannic@comp.nus.edu.sg

q Symptom and failure cause can be far apart.
q Symptoms of one error may be hidden by other errors.

q Fault masking: “An occurrence in which one defect prevents the detection of another
[IEEE 610]

q Symptoms of one error may disappear or change due to correction of another error.

„Debugging is one of the more
frustrating parts of programming. It
has elements of brain teasers,
coupled with the annoying
recognition that you have made a
mistake.“
B. Shneiderman: Software Psychology. Winthorp
Publishers, 1980.

CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging – Approaches

9yannic@comp.nus.edu.sg

q Brute Force
Collect all data about the program execution. Try to find the error in it.

q Cause Elimination
The test case is reduced in size until only a small part of the program is executed.
The error "must" be located in this part.

q Backtracking
The possible program execution paths are traced back from the occurrence of the
symptoms to the program start. The error "must" be on one of the paths.

Tools can be used to collect the needed data (executed program parts, program paths,
program state, ...): Coverage analysis, Interactive Debugger, Trace Generator

à see Lab sessions in Week 8!

CS3213 FSE (Project-Part) – Week 8 – Debugging

TRAFFIC Principle

10yannic@comp.nus.edu.sg

Debugging should follow the TRAFFIC principle:

q Track the problem

q Reproduce – Requires control over data and environment.

q Automate – Write a simple test case that exercises the problem.

q Find Origins – Where does the failure originate? Locate likely fault locations.

q Focus – Focus your effort on the most likely origin.

q Isolate – Isolate the fault (see scientific method of debugging, next slide).

q Correct – Fix the fault and verify that the failure no longer occurs.
Check for regression errors.

CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging – Scientific Method

11yannic@comp.nus.edu.sg

1. Observe the misbehavior.
2. Create a hypothesis about the cause of the misbehavior.
3. Use the hypothesis for predictions.
4. Test the hypothesis with experiments or observations and refine the hypothesis

based on the results.
5. Repeat steps 3 and 4 until the cause is found.

CS3213 FSE (Project-Part) – Week 8 – Debugging

Debugging – Techniques

12yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

q Reduce the input: Delta Debugging
Simplifying and Isolating Failure-Inducing Input

q Reduce the program: Program Slicing
Isolating the relevant program statements/locations to focus debugging effort.
q Dynamic Slicing
q Static Forward and Backward Slicing
q Relevant Slicing

q Identify faulty statements: Statistical Fault Localization
Ranking suspicious program statements.

Reducing the input

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Andreas Zeller and Ralf Hildebrandt, "Simplifying and isolating failure-inducing input," in IEEE Transactions on Software Engineering, vol. 28, 2002.
Andreas Zeller. “Why programs fail: a guide to systematic debugging”. Elsevier, 2009.

Delta Debugging

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

q Goal: Figure out a minimal cause that ‘explains’ an error!
q Use a variation on binary search: narrow the difference between passing and failing

inputs

“Rather than only minimizing the failing input, delta
debugging (dd) also maximizes the passing input until a
minimal failure-inducing difference is obtained.”

Delta Debugging
q Check: https://www.debuggingbook.org
q Applications: Delta Debugging can isolate failure causes

q in the (general) input
q in the version history
q in thread schedules

q Every such identified cause implies a fix – but not necessarily a correction.

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Why?

https://www.debuggingbook.org/

Reducing the program

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

q Program slicing is the computation of the subset of program
statements (à the program slice).

q The program slice includes statements that may affect the values at
some point of interest (~ the slicing criterion)

q Concept: Select a line to be considered and hide all irrelevant lines.

q Dynamic Slicing: slice for a particular program execution
à dynamic dependencies

q Static Slicing à static dependencies
q What is affected by this slicing criterion? (forward)

q What is influenced the value of this variable? (backward)

Dynamic Slicing

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

b=2;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

q Slice backward from the erroneous
output of the program

q Dynamic slice includes the closure of
q Data dependencies and
q Control dependencies

For our test case with a=2, the
value of variable x printed in
line 6 is unexpected.

1. void setRunningVersion(boolean runningVersion)

2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
} Slicing Criterion

Dynamic Slicing (applied)

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

runningVersion=false

Dynamic Slicing – Problems

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

q Huge overheads: Backwards slicing requires trace storage.
q Dynamic Slice is still too large …

… for human comprehension

Hierarchical Slicing: operates on higher abstractions, e.g.,
components, packages, classes, …

Developer/User can zoom in and investigate!

Tao Wang and Abhik Roychoudhury. “Hierarchical dynamic slicing”. In Proceedings of the 2007 international symposium on Software testing and
analysis (ISSTA), 2007.
J. Gao, Y. Liu and B. Li, "Hierarchical Slicing Object-Oriented Programs for Debugging," 2009 International Conference on Information Engineering and
Computer Science, 2009.

Static Slicing (1/2)

20yannic@comp.nus.edu.sg

What is affected by
this assignment?

What is influenced
the value of this
variable?

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

à static dependencies, does not depend
on specific test case

If dynamic slice computation and traversal becomes manageable
q We can look beyond dynamic slices.
q We can look at errors which are not captured in dynamic slices.

Forward Slice Backward Slice

Static Slicing (2/2)

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

What is affected by this
assignment?

What influenced the
value of this variable?

Static Slicing
q source code
q statement
q static dependence

Static vs Dynamic Slicing (1/4)

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Dynamic Slicing
q a particular execution
q statement instance
q dynamic dependence

b=1;
If (a>1)

x=1;
else

x=2;
printf (“%d”, x);

1
2
3
4
5
6 Slicing Criterion

❔

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

Limitations of Dynamic Slicing
input: a=2

What is the content of
the dynamic slice?

Let’s assume that the error is
that line 5 is not executed.
What can be the cause and

why is it problematic wrt
dynamic slice?

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

24yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Static vs Dynamic Slicing (2/4)

input: a=2

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2

Source of Failure

Dynamic Slice

Execution is omitted

Static vs Dynamic Slicing (3/4)

25yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2

Potential Dependence (1/2)

26yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2

Potential
Dependence Dynamic Data

Dependence

Potential Dependence (2/2)

Relevant Slice

27yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2
Static Dynamic Relevant

1
2
3
4
5

6

2

6

1
2

4

6

28yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Slicing Example Result

q „fuzzy slices“
q Probability that the line of code will lead to the misbehavior
q Lines of code that are often executed on failed tests are suspicious.

Statistical Fault Localization –
Tarantula

29yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

James A. Jones, Mary Jean Harrold, John T. Stasko: Visualization of test information to assist fault localization. ICSE 2002: 467-477
James A. Jones, Mary Jean Harrold: Empirical evaluation of the tarantula automatic fault-localization technique. ASE 2005: 273-282

Dynamic Slicing - Example

30yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

mid(){
int x,y,z,m; 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3

read(“Enter 3 numbers:”, x,y,z); ● ● ● ● ● ●
m = z; ● ● ● ● ● ●
if(y < z) ● ● ● ● ● ●

if(x < y) ● ● ● ●
m = y; ●

else if (x< z) ● ● ●
m = y; // bug ● ●

else ● ●
if (x > y) ● ●

m = y; ●
else if (x > z) ●

m = x;
print(“Middle number is:”, m); ● ● ● ● ● ●

}
Pass Status P P P P P F

Test Cases

Recap

mid(){
int x,y,z,m; 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 suspiciousness

read(“Enter 3 numbers:”, x,y,z); ● ● ● ● ● ● 0.5
m = z; ● ● ● ● ● ● 0.5
if(y < z) ● ● ● ● ● ● 0.5

if(x < y) ● ● ● ● 0.625
m = y; ● 0.0

else if (x< z) ● ● ● 0.714
m = y; // bug ● ● 0.833

else ● ● 0.0
if (x > y) ● ● 0.0

m = y; ● 0.0
else if (x > z) ● 0.0

m = x; ---
print(“Middle number is:”, m); ● ● ● ● ● ● 0.5

}
Pass Status P P P P P F

Statistical Fault Localization

31yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Can use several other available
metrics for ranking statements,
e.g. Ochiai metric

fail(s)

Öallfail*(fail(s)+pass(s))
Score(s)=

A model for spectra-based software diagnosis, Naish et. al., TOSEM 20(3), 2011.

32yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Suspiciousness
Scores

Brightness represents the
confidence of the color
assignment to the program
line s

For a program line s:
Color describes the
pass/fail of test cases that
executed the program line s

Visualizing Fault Localization (1/3)

33yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

mid(){
int x,y,z,m; 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3

read(“Enter 3 numbers:”, x,y,z); ● ● ● ● ● ●
m = z; ● ● ● ● ● ●
if(y < z) ● ● ● ● ● ●

if(x < y) ● ● ● ●
m = y; ●

else if (x< z) ● ● ●
m = y; // bug ● ●

else ● ●
if (x > y) ● ●

m = y; ●
else if (x > z) ●

m = x;
print(“Middle number is:”, m); ● ● ● ● ● ●

}
Pass Status P P P P P F

Test Cases

Visualizing Fault Localization (2/3)

34yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

q SeeSoft view!
q Each pixel represents a char in

the program file

35yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Visualizing Fault Localization (3/3)

mid(){
int x,y,z,m;
read(“Enter 3 numbers:”, x,y,z);
m = z;
if(y < z)

if(x < y)
m = y;

else if (x< z)
m = y; // bug

else
if (x > y)

m = y;
else if (x > z)

m = x;
print(“Middle number is:”, m);

}

❏ Before fixing, be sure to understand the problem (cause-effect chain).
❏ Understand the program, not just the problem (effect of your change).
❏ Before you make a change to the code, be confident that it will work!
❏ Never start changing code before saving the original. Always use version control!
❏ Wishful thinking doesn’t fix bugs! (think hard about the solution)
❏ Use the most general fix available.
❏ Do not attempt to fix multiple defects at the same time
❏ After fixing,
❏ make sure the fix solves the problem,
❏ make sure no new defects are introduced,
❏ you might want to learn from it, and
❏ look for similar defects!

Debugging – Closing Remarks

36yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

Next Week (Project-Part) – Week 9:
Static Analysis: Techniques & Tools
Ø Finishing Debugging (if remaining items) and Recap.
Ø Static Analysis: IDE, Checkstyle, FindBugs/Spotbugs, Error Prone, Infer

Ø Assignment 8: Final Code Submission + Presentations

Conclusion
❏ Debugging is time-consuming, but can be aided by tools and

techniques.
❏ Note: quality cannot be introduced by testing…

à analytical vs constructive methods!

37yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 8 – Debugging

