
CS3213 Project – Week 9
Static Analysis | 16-03-2022

❏ Recap: Program Slicing
❏ Practical Introduction to Static Analysis

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Reducing the program
q Program slicing is the computation of the subset of program 

statements (à the program slice).
q The program slice includes statements that may affect the values at 

some point of interest (~ the slicing criterion)
q Concept: Select a line to be considered and hide all irrelevant lines.

q Dynamic Slicing: slice for a particular program execution
à dynamic dependencies

q Static Slicing à static dependencies
q What is affected by this slicing criterion? (forward)

q What is influenced the value of this variable? (backward)

Recap

2yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Dynamic Slicing

3yannic@comp.nus.edu.sg

b=2;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6 Slicing 
Criterion

Data 
Dependence

Control 
Dependence

q Slice backward from the erroneous   
output of the program

q Dynamic slice includes the closure of
q Data dependencies and
q Control dependencies

For our test case with a=2, the 
value of variable x printed in 
line 6 is unexpected.

Recap

CS3213 FSE (Project-Part) – Week 9 – Static Analysis



❔Exercise: Dynamic Slicing

4yannic@comp.nus.edu.sg

int x = read(x);
if (x < 0) {
y = x + 1;
z = x + 2;

} else {
if (x == 0) {
y = x + 3;
z = x + 4;

} else {
y = x + 5;
z = x + 6;

}
}
printf(”%d”, y);
printf(”%d”, z);

CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Input: -1

Can you specify the 
resulting dynamic slice?

1
2
3
4

5
6
7

8
9

10
11

Slicing Criterion



❔Exercise: More Dynamic Slicing

5yannic@comp.nus.edu.sg

int x = read();
int z = 0;
int y = 0;
int i = 1;
while (i <= x) {
z = z + y;
y = y + 1;
i = i + 1;

}
printf(”%d”, z);

CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Input: 1

Can you specify the 
resulting dynamic slice?

1
2
3
4
5
6
7
8

9

Slicing Criterion



Frank Tip, “A survey of program slicing techniques”, Journal of Programming Languages, vol. 3, pages 121-189, 1995. 
https://www.franktip.org/pubs/jpl1995.pdf

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://www.franktip.org/pubs/jpl1995.pdf


❔
Any more questions for program slicing?

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Debugging

Software Quality Assurance

Software Project
Management

Software Testing Constructive
Software Engineering

Test by Human
(Inspection, Review)

Test by Machine

organizational analytical constructive

manual automated

analysis execution

Static Analysis Dynamic Analysis
(Testing)IDE, Checkstyle, 

FindBugs/Spotbugs, Error Prone, 
Infer, etc.

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Software Quality Assurance
Software quality assurance includes organizational, constructive, and 
analytical measures to provide confidence that the software meets the 
required quality. 

q Organizational Measures: Introduction of programming guidelines. 
q Constructive Measures: Tools for implementing the guidelines, 

e.g., a program code formatter.
q Analytical measures: Audits/Reviews with the guidelines to detect 

violations.

9yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Testing as Quality Assurance
Software testing is a measure for software quality assurance.

q Organizational Measures: Specifications for the test.
q Constructive Measures: Avoiding errors by using appropriate 

languages and techniques.
q Analytical measures: Detect errors.

10yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



Tool Support for Software Quality 
Assurance

https://spotbugs.github.io
https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea

https://pmd.github.io
https://plugins.jetbrains.com/plugin/1137-pmdplugin

https://checkstyle.sourceforge.io
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

11yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://spotbugs.github.io/
https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea
https://pmd.github.io/
https://plugins.jetbrains.com/plugin/1137-pmdplugin
https://checkstyle.sourceforge.io/
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea


q Static code analysis to check programming guidelines
q own configuration may be necessary
q integration into build process or directly into IDE
q https://checkstyle.sourceforge.io

https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
q Checks

q https://checkstyle.sourceforge.io/checks.html
q E.g., AvoidStarImport, EmptyCatchBlock, EqualsHashCode, FallThrough, 

ReturnCount
q You can add more checks: 

https://checkstyle.sourceforge.io/writingchecks.html

12yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://checkstyle.sourceforge.io/
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
https://checkstyle.sourceforge.io/checks.html
https://checkstyle.sourceforge.io/writingchecks.html


bad naming

line too long

More examples 
in the lab.

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis



q SpotBugs is a fork of FindBugs (which is now an abandoned project)
q Static analysis tool for finding errors in Java programs based on bug patterns.
q "A bug pattern is a code idiom that is often an error.”

(~Anti-Pattern, Code Smell)
q based on Java bytecode
q https://spotbugs.github.io

https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea

q But Patterns / Descriptions
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

SpotBugs

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://spotbugs.github.io/
https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


SpotBugs

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Category: Bad Practice
Examples: q Dm: Method invokes System.exit(…)

Invoking System.exit shuts down the entire Java virtual machine. This 
should only been done when it is appropriate. Such calls make it hard 
or impossible for your code to be invoked by other code. Consider 
throwing a RuntimeException instead.

q HE: Class defines equals() and uses Object.hashCode()
This class overrides equals(Object), but does not override hashCode(), 
and inherits the implementation of hashCode() from java.lang.Object
(which returns the identity hash code, an arbitrary value assigned to the
object by the VM).  Therefore, the class is very likely to violate the
invariant that equal objects must have equal hashcodes.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#bad-practice-bad-practice

Violations of recommended and essential coding practice. 

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


SpotBugs

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Category: Correctness
Examples: q NP: Method with Optional return type returns explicit null

The usage of Optional return type (java.util.Optional or 
com.google.common.base.Optional) always means that explicit null
returns were not desired by design. Returning a null value in such case is 
a contract violation and will most likely break client code.

q Eq: equals method always returns false
This class defines an equals method that always returns false. This means 
that an object is not equal to itself, and it is impossible to create useful 
Maps or Sets of this class. More fundamentally, it means that equals is not 
reflexive, one of the requirements of the equals method.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#correctness-correctness

Probable bug - an apparent coding mistake resulting in 
code that was probably not what the developer intended. 

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


SpotBugs

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Category: Performance
Examples: q IIO: Inefficient use of String.indexOf(String)

This code passes a constant string of length 1 to String.indexOf(). It is 
more efficient to use the integer implementations of String.indexOf(). f. e. 
call myString.indexOf('.') instead of myString.indexOf(".") 

q WMI: Inefficient use of keySet iterator instead of 
entrySet iterator
This method accesses the value of a Map entry, using a key that was 
retrieved from a keySet iterator. It is more efficient to use an iterator on 
the entrySet of the map, to avoid the Map.get(key) lookup.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#performance-performance

Code that is not necessarily incorrect but may be inefficient.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


SpotBugs

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Category: Security
Examples: q Dm: Hardcoded constant database password

This code creates a database connect using a hardcoded, constant 
password. Anyone with access to either the source code or the 
compiled code can easily learn the password.  

q HRS: HTTP cookie formed from untrusted input
This code constructs an HTTP Cookie using an untrusted HTTP 
parameter. If this cookie is added to an HTTP response, it will allow a 
HTTP response splitting vulnerability.
See http://en.wikipedia.org/wiki/HTTP_response_splitting for more 
information.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#security-security

A use of untrusted input in a way that could create 
a remotely exploitable security vulnerability.

http://en.wikipedia.org/wiki/HTTP_response_splitting
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


SpotBugs

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Category: Dodgy Style
Examples: q UwF: Field not initialized in constructor but dereferenced   

without null check
This field is never initialized within any constructor, and is therefore could be null 
after the object is constructed. Elsewhere, it is loaded and dereferenced without a 
null check. This could be either an error or a questionable design, since it means a 
null pointer exception will be generated if that field is dereferenced before being 
initialized.

q PZLA: Consider returning a zero length array rather than null
It is often a better design to return a length zero array rather than a null reference 
to indicate that there are no results (i.e., an empty list of results). This way, no 
explicit check for null is needed by clients of the method.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#dodgy-code-style

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html


q PMD is a source code analyzer.
q It finds common programming flaws like unused variables, empty catch 

blocks, unnecessary object creation, etc.
q It supports Java, JavaScript, Salesforce.com Apex and Visualforce, PLSQL, 

Apache Velocity, XML, XSL.
q Additionally, it includes Code Clone Detection with CPD, the copy-paste-

detector.
q CPD finds duplicated code in Java, C, C++, C#, Groovy, PHP, Ruby, Fortran, 

JavaScript, PLSQL, Apache Velocity, Scala, Objective C, Matlab, Python, Go, 
Swift and Salesforce.com Apex and Visualforce.

q https://pmd.github.io
https://plugins.jetbrains.com/plugin/1137-pmdplugin

PMD

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://pmd.github.io/
https://plugins.jetbrains.com/plugin/1137-pmdplugin


q Best Practices: Rules which enforce generally accepted best practices, e.g.,
JUnitTestsShouldIncludeAssert
JUnit tests should include at least one assertion. This makes the tests more robust, and using 
assert with messages provide the developer a clearer idea of what the test does.

q Code Style: Rules which enforce a specific coding style.
q Design: Rules that help you discover design issues.
q Documentation: Rules that are related to code documentation.
q Error Prone: Rules to detect constructs that are either broken, extremely 

confusing or prone to runtime errors.
q More: Multithreading, Performance, Security

PMD – Java Rules

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

https://pmd.github.io/pmd-6.43.0/pmd_rules_java.html

https://pmd.github.io/pmd-6.43.0/pmd_rules_java.html


What is the difference?

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis

Will be discussed in the lab tomorrow.



Next Week (Project-Part) – Week 10:
Implementation
Ø Implementation (Clean Code)
Ø Documentation & Reusability

Ø Assignment 9: Final Report

Conclusion
❏ Static Analysis based techniques can be easily integrated into the

software development workflow!
❏ Note: quality cannot be introduced by testing…

à analytical vs constructive methods!

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 9 – Static Analysis


