
CS3213 Project – Week 11
Integration Testing | 30-03-2022

❏ Introduction to Integration Testing
❏ Integration Strategies
❏ Summary of Testing Strategies

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration Problems (1/2)

2yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

https://c.tenor.com/7c9bvnQbGCIAAAAd/unittest-unit.gif

https://c.tenor.com/7c9bvnQbGCIAAAAd/unittest-unit.gif

Integration Problems (2/2)

3yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

https://c.tenor.com/T7gxakoKzAAAAAAd/unit_vs_integration_tests.gif

https://c.tenor.com/T7gxakoKzAAAAAAd/unit_vs_integration_tests.gif

q The software architecture provides the construction and assembly plan
(levels/granularity of integration).

q Typical problem: Incompatible interfaces (syntactic and semantic conflicts
due to different understanding of the specification and sloppiness or - far
worse - lack of specification)

q Challenge:
Components are available at different points in time

The process of combining software
components, hardware components, or both
into an overall system.

[IEEE Std 610.12 (1990)]

Integration

4yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Sample Architecture
(Component Dependencies)

5yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

B C

A

D

G

E F

H I

J

q Integration tests serve for the (syntactical and semantic)
evaluation of the interfaces.

q It is less concerned with the errors of the individual
components (unit testing) but with consistency problems
between the components.

q When everything is integrated, the system test can follow.

Testing in which software components, hardware
components, or both are combined and tested to
evaluate the interaction between them.

[IEEE Std 610.12 (1990)]

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration Testing

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Relationship between testing and
developing software

Requirements Specification

System Architecture

Module Design &
Implementation

System Test

Integration Test

Unit Test

Development Phases Test Phases

Time Sequence
Testing against …

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration and Integration Testing
(Process)

Determine the integration
order based on the

architecture.

Integration finished?

Finished.

Prepare components
for the next integration

step.

Derive test cases for
the integration step.

Implement test drivers
and placeholders.

Integrate components
and check interfaces

syntactically.

Execute integration test
cases.

Repair faulty
component.

yes

no

o.k.

o.k.

class A {
System.open(f);

...
B.out(f,new A(“5”));
}

class B {
void out(f,a) {

int y = C.cvt(a.x);
System.write(f,y);

}}

class C {
int cvt(x) {

...
return y;

}

system under
test

class Driver {
Env.open(f);

B.out(f,new A(“5”));
assert(Env.val(f)==5);
}

class B {
void out(f,a) {

int y = C.cvt(a.x);
System.write(f,y);

}}

class C {
int cvt(x) {

if(x==“1”) return 1;
if(x==“5”) return 5;

}

placeholder
(stub)

test driver

oracle

9yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration and Integration Testing
(Notation)

Problem definition
q In what order are the components integrated?
q When is it as effective and efficient as possible?
q Components are ready at different times.
q Testers should not be idle just because a

component is not ready.

This results in different integration strategies...
(next slide)

10yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration Strategies

q Big-bang integration (integration in one step)
q Incremental integration

q Strategies:
q Bottom-Up
q Top-Down
q Outside-In
q Continuous Integration

q Partially integrated system usually not executable
à test drivers and placeholders (stubs/dummies) required

q Number of test drivers and placeholders varies depending on strategy
q Goal: Minimum effort for test drivers and placeholders!

q Integration test method: Static vs. dynamic

11yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration (testing) strategies and procedures

q i.e. integration in one step
q in principle very attractive, because:

q System is immediately complete
q System can be tested without test drivers and placeholders

q Practically hardly (successfully) possible, because:
q Components contain too many errors and inconsistencies
q System hardly executable
q Fault Localization

q Unfortunately often encountered in practice
q Therefore only possible if high quality of components and good consistency

of interfaces are ensured before integration

12yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Big-Bang-Integration

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Top-Down-
Integration

Module 0

Placeholder for
services in Module 1

Placeholder for
services in Module 2

Module 0

Placeholder for
services in Module 3

Placeholder for
services in Module 4

Module 1 Module 2

Placeholder for
services in Module 5

Time

Module 0

Module 1 Module 2

Module 3 Module 4 Module 5

q Advantages:
q Important control functionality is tested first.
q Already at the beginning a product develops, which lets recognize the rough

workflow.
q Targeted testing of error handling in case of faulty return values of subordinate

routines is possible, since return values are provided by placeholders.
q Disadvantages:

q Many placeholders required.
q With increasing integration depth the production of certain test situations in

more deeply arranged modules becomes more difficult.
q Interaction between software under test, system software and hardware is

tested late.
q Increasing personnel requirements during the test.

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Top-Down-Integration

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Top-Down-Integration (Example)

❔
B C

A

D

G

E F

H I

J

Integrated Component; Placeholder (Stub)
(Driver for F emulates queries for E)

A B D G H C F E I J

Top-Down-Integration (Example)

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

B C

A

D

G

E F

H I

J

Driver#
0 A b c [d(A)]
1 A B d c
2 A B D g h c
3 A B D G h c j
4 A B D G H c j
5 A B D G H C f e j
6 A B D G H C F e j d(F)
7 A B D G H C F E i j
8 A B D G H C F E I j
9 A B D G H C F E I J

Bottom-Up-
Integration

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Time

Driver for services in
Module 3

Driver for services in
Module 4

Driver for services in
Module 5

Module 3 Module 4 Module 5

Module 0

Module 1 Module 2

Module 3 Module 4 Module 5

Module 1 Module 2

Module 3 Module 4 Module 5

Driver for services in
Module 1

Driver for services in
Module 2

q Advantages:
q Interaction between software under test, system software and hardware is

tested early.
q Since test data inputs are made via drivers, no complex back-calculation of

inputs is required.
q Intentional erroneous inputs to test the error handling are easily possible.

q Disadvantages:
q Drivers required.
q Focused testing of the error handling for erroneous return values of sub-

components is hardly possible, since the real components are used.
q A presentable product develops only at the very last, since the top/coordinating

modules are added only then.
q Decreasing manpower requirements as testing progresses.

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Bottom-Up-Integration

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Bottom-Up-Integration (Example)

❔
B C

A

D

G

E F

H I

J

Only one Placeholder (stub); but many drivers necessary.

J I H G F E D C B A

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Bottom-Up-Integration (Example)

B C

A

D

G

E F

H I

J

Driver#
0 J d(J)
1 J I d(J),d(I)

9 J I H G F E D C B A [d(A)]

2 J I H d(J),d(I),d(H)
3 J I H G d(J),d(I),d(H),d(G)
4 J I H G F e d(I),d(H),d(G),d(F)
5 J I H G F E d(H),d(G),d(F),d(E)
6 J I H G F E D d(F),d(E),d(D)
7 J I H G F E D C d(D),d(C)
8 J I H G F E D C B d(C),d(B)

Outside-In-
Integration

Time

Driver for services in
Module 3

Driver for services in
Module 4

Driver for services in
Module 5

Module 3 Module 4 Module 5

Module 0

Placeholder for
services in Module 1

Placeholder for
services in Module 2

Time

Module 0

Module 1 Module 2

Module 3 Module 4 Module 5

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

q Advantages:
q Important control functionality is tested first.
q Already at the beginning, a product is created that shows the rough processes.
q Targeted testing of error handling
q Interaction between software under test, system software and hardware is

tested early.
q Since test data inputs are made via drivers for those modules that are

integrated from the bottom up, no complex back-calculation of inputs is
required.

q Intentional mis-entry to test error handling is easily accomplished at the bottom
of the module system.

q The manpower requirement is more constant during integration testing.
q Disadvantages:

q Dummies and drivers required.

Outside-In-Integration

q Syntax checking of interfaces:
q Many modern programming languages allow syntactic consistency checking

between interface declarations and their usage.
q Coupling categorization:

q The coupling between two modules is a measure of their dependency.
q Software engineering recognizes several types of coupling. Which of these

couplings exist can be determined by static analysis from the implementations.
q Goal is the weakest possible coupling.

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Static Integration Testing (1/2)

q Reveal hidden dependencies:
q A hidden dependency between two modules exists, e.g., when an external

variable is shared that a third module exports.
q Such non-obvious dependencies can be detected by static analysis.

q Intermodular data flow anomaly analysis:
q Rules analogous to those for variable usages within modules can be defined for

interface parameter usages.
q A violation of these rules is a data flow anomaly.

24yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Static Integration Testing (2/2)

25yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Dynamic Integration Testing
q Prerequisites:

q Executable system or subsystem
q Corresponding unit testing has been performed
q Instrumentation of the test subject, if applicable

q Groups of testing techniques analogous to unit testing:
q Control flow-oriented integration test
q Data flow-oriented integration test
q Function-oriented integration test

26yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Integration Principles
q Plan the integration!
q Start integration early! (e.g., before coding)
q Do not underestimate the effort for integration and integration test!
q Precisely record the total effort for the integration!
q Recognize and reduce integration risks!
q Repair detected errors cleanly and completely!

q Goal: Fully automate the integration, delivery, and installation processes.
q Delivery pipeline (Humble, Farley (2010))

q Continuous Integration Server
qHudson/Jenkins
qBamboo

Continuous
{ Integration, Delivery, Deployment }

Humble, Jez, and David Farley. Continuous delivery:
reliable software releases through build, test, and
deployment automation. Pearson Education, 2010.

27yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

28yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Tools

mocking framework for unit tests in Java
https://site.mockito.org

framework for automated integration
tests supporting a wide range of message

protocols and data formats
https://citrusframework.org

framework for load test functional
behavior and measure performance

https://jmeter.apache.org

https://site.mockito.org/
https://citrusframework.org/
https://jmeter.apache.org/

q TCP/IP
q FTP
q SSH
q RMI (RPC)
q JDBC
q CSV

q HTTP
q XML
q Web Services (SOAP)
q Messaging
q JSON
q E-Mail (SMTP/POP/IMAP)

q Component frameworks, Architectural Styles
q 3-tier architectures (Web, Business, Persistence)

q Java EE, EJB
q REST (Microservices)

q Integration Architectures
q SOA
q Enterprise Service Bus

q Transport Protocols / Exchange Formats / Interface Technology

29yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

(Selected) Technologies

Bottom-Up Start point: component that is not
called.
Larger sub-systems are created step
by step.

No need for stubs. Needs test drivers for high-level
components.

Big Bang Everything is put together at once. § All errors at once
§ Difficult fault loalization
§ Time until integration is

wasted

Ad-Hoc Start point: components are
integrated as soon as they are ready.

No waiting times. Needs both, stubs and drivers.

Core Idea Pro Con

Top-Down Start point: Component that only
depends on others, but has no
incoming dependency.
Other components are replaced by
placeholders.

Little or no drivers
needed as high level
components are
used as test
environment.

§ Can be expensive
§ Low level components must

be replaced with stubs.

30yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Overview: Integration Strategies

❔
Any remaining question about
Integration Testing?

31yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

More exercises in the lab tomorrow!

Next Week (Project-Part) – Week 12:
Recap Project Topics
Ø Aspects of Version Control
Ø Recap Topics

Conclusion
❏ Unit Testing ≠ Integration Testing
❏ Keep deadlines in mind: Final Code submission.

Do not forget the presentations!

32yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 11 – Integration Testing

Last
Lecture

