
SOFTWARE TIMELINESS
CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 1

WHAT WE DID EARLIER

2

◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Discussion of the thinking behind your course project

◦ Static analysis and vulnerability detection: Secure SE

◦ Software Debugging

◦ White-box Testing: test estimation and generation

◦ Taint propagation, malicious inputs: secure SE

◦ Today

◦ Software timeliness: performance gaps, and real-time software

WCET

3

• Worst Case Execution Time (WCET) of a program for a given

hardware platform.

• Sequential Terminating Programs.

• Gets input, computes, produces output.

• Many inputs are possible.

• Leads to different execution times.

• WCET : An upper bound on the execution time for all possible

inputs.

WHY NEED ANALYSIS?

4

• To find WCET of a program, execute it for all possible

inputs.
• WCET by measurement.

• Exponentially many possible inputs in terms of input size.

• Insertion sort program

• Similar problems will be encountered for WCET Analysis via platform simulation.

• Need access to platforms/simulators also!
• Go for static analysis.

WCET BY MEASUREMENT?

5

• What about one-path programs such as matrix

multiplication?

• Execution path is independent of input data.

• Still execution time can be variable.

• Latency of floating point operation (e.g., multiplication) depends on the input

data.

• Not possible to try it on all possible platforms and then choose one.

• Often trying to decide the platform as well.

WCET ANALYSIS

6

 Employ static analysis to compute an upper bound on

actual WCET (Estimated WCET)

 Run program on selected inputs get a lower bound on

actual WCET (Observed WCET)

Observed

Actual

Estimated

Estimated WCET ≥ Actual WCET ≥ Observed WCET

BCET AND WCET

7

D
is

tr
ib

u
ti
o
n
 o

f
E
x
e
cu

ti
o
n
 T

im
e

Actual

BCET

Actual

WCET

Execution Time

Observed

WCET

Estimated

WCET
Observed

BCET

Estimate

d

BCET

Actual

Observed

Over-estimation

WCET ANALYSIS

8

• Program path analysis

• All paths in control flow graph are not feasible.

• Micro-architectural modeling

• Dynamically variable instruction execution time.

• Cache, Pipeline, Branch Prediction

• Not covered in our Software Engineering perspective.

Observed

Actual

Estimated

CONTROL FLOW GRAPH

9

• x = 1; y = 0; z = 0;

• while (x < 10){

• if (x > 5)

• y = y + x;

• else z = z + x;

• x = x + 1;

• }

• printf(….);

x =1; y = 0; z = 0;

x < 10

x > 5

y = y +x z = z + x

Y N

x = x +1
printf(…)

Y N

Nodes of the graph, basic blocks, are maximal code fragments executed without control

transfer. The edges denote control transfer.

EXERCISE: CFG

1

0

procedure Check_data()

{ int i = 0, morecheck = 1, wrongone = -1, datasize = 10;

L: while (morecheck)

LB: {

if (data[i] < 0)

A: { wrongone = i; morecheck = 0; }

else

B: if (++i >= datasize) morecheck = 0;

}

if (wrongone >= 0)

C: { handle_exception(wrongone); return 0; }

C’: else return i;

}

EXERCISE: CFG

1

1

procedure Check_data()

{ …. <S1>

L: while (morecheck)

LB: {

if (data[i] < 0)

A: { …. <S2> }

else

B: if (++i >= datasize)

… <S3>;

}

if (wrongone >= 0)

C: { … <S4> }

C’: else return i;

}

morecheck

data[i]<0

++i >= datasize<S2>

<S3>

wrongone>=0

<S4>

return i

Y N

Y N

Y N

Y N

<S1>

EXERCISE ON CFG

1

2

How to construct an inter-procedural CFG for a program with many

procedures?

main(){ f1(){ f2(){

… … …

f1(); f2(); f2();

f2(); … …

… } }

}

WHY ALL PATHS MAY NOT BE
FEASIBLE?

1

3

• if (x > 0{

• y = 1;

• else

• y = 2;

• }

• if (x > 1){

• z = 10;

• else

• z = 20;

• }

• …

x >0

y = 1 y = 2

x >1

Y N

z = 10 z = 20

Y N

…

x  0  x > 1

RESTRICTIONS OF ANALYSIS –
(1)

1

4

• Static analysis need not be on source program.

• We can perform static analysis on assembly code of a given

program.

• The analysis is only for time taken, and not for the memory

locations / values accessed.

• No restriction on program data structures used for WCET

analysis.

• What about control flow ?

RESTRICTIONS OF ANALYSIS –
(2)

1

5

• Restrictions on control flow

• 1. No unbounded loops

• Common sense.

• Otherwise how to guarantee time?

• 2. No unbounded recursion

• Similar issue.

• 3. No dynamic function calls

• Need to statically know the functions called, and the possible call sites of these

functions.

ORGANIZATION OF WCET
ANALYSIS

1

6

• What is Timing Analysis ?

• An Early solution -- Timing Schema.

• Modeling Program Flows.

• Primarily Control flow.

• Modeling timing effects of Micro-architecture.

• Cache, pipeline, Not covered in CS3213 FSE

TIMING SCHEMA

1

7

• One of the first works on WCET analysis.

• Basically, perform control flow analysis to find the “longest”

program path.

• The notion of “longest” is weighted

• Take into account the cost of executing individual program

elements.

• Timing schema is a simple way of composing these costs.

• Does not work on Control Flow Graphs

• Works on Abstract Syntax Tree

EXAMPLE

1

8

sum = 0;

for (i=0; i< 10; i++){

if (i % 2 == 0)

sum += i;

if (sum < 0)

break;

}

return sum;

SEQUENCE

sum = 0;

i = 0

FOR

i < 10 i++

return sum

SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

AST AND CFG

1

9

• Hierarchy

• AST shows the different scopes at different levels

• CFG has no hierarchy.

• Loops

• AST is tree, free from cycles

• Any loop in the program is a cycle in the CFG.

REPRESENTATIONS: AST AND CFG

2

0

SEQUENCE

sum = 0; i = 0 FOR

i < 10 i++

return sum

SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

sum =0; i =0;

i < 10

i %2==0

sum+=i

sum<0

break

i++ return sum

Y N

Y N

Y N

TIMING SCHEMA – (WORKS ON AST)

2

1

• Time(S1;S2) = Time(S1) + Time(S2)

• Time(if B {S1} else {S2})

• = Time (B) + max(Time(S1), Time(S2))

• Time(while B {S1})

• = (n+1) * Time(B) + n * Time(S1)

• n is the loop bound.

• Time(for(Init; B; Incr.){ S })

• = Time(Init) + (n+1)*Time(B) + n*Time(S) + n*Time(Incr.)

• Time(if (B) { S}) = Time(B) + Time(S)

TIMING SCHEMA

2

2

SEQUENCE

sum = 0; i = 0 FOR

i < 10 i++

return sum

SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

(1 + 1) =

2

(1 + 1) = 2

4

Time(for-loop)

= Time(i= 0) +

11 * Time(i < 10) +

10 * 4 + 10 * Time(i++)

= 1 + 11 + 10*4 + 10*1

= 62 time units

Assumption:

Each assignment/condition

takes 1 time unit

(not realistic in practice).

PROBLEMS WITH TIMING SCHEMA

2

3

• Language Level:

• Just a control flow analysis.

• Insensitive to knowledge of infeasible paths.

• Compiler level:

• How to integrate effect of compiler opt?

• Easy to handle – schema on optimized code.

• Architecture level:

• Instructions take constant time – Not true.

• Cache hits, pipelining and other performance enhancing features.

INFEASIBLE PATHS NOT CONSIDERED

24

SEQUENCE

sum = 0; i = 0 FOR

i < 10 i++

return sum

SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

It is impossible to execute

i%2==0 to be true in two

consecutive iterations.

Even if this information is made

available – timing schema cannot

use it.

The time assigned to

this block of code is

Time(i%2==0) +

Time(sum+=i)

This is the max. time

taken by this

statement in any

iteration.

INFEASIBLE PATHS

2

5

SEQ

i = 0 WHILE

B IF

B1 S1 S2

T3 = T0 +

max(T1,T2)

T0
T1 T2

T4

T5 = (n+1)*T4 + n*T3T6

T = T5 + T6

What if T1 > T2

and

S1 is executed

only in the first

loop iteration?

INFEASIBLE PATHS

2

6

 Infeasible sequence of statements in general

 if (J== 0) {

 K = 1

 } else {

 K = 10

 }

 if (K < 5){

 J++;

 } else {

 J--;

 }

Cannot be executed
together

Such infeasible paths
should not be a witness
to our WCET estimate.

INFEASIBLE PATH HANDLING IN TIMING SCHEMA

2

7

 if (J== 0) {

 K = 1

 } else {

 K = 10; …

 }

 if (K < 5){

 J++;…

 } else {

 J--;

 }

SEQUENCE

ITE ITE

J== 0 K=1
K=10;

…
K <5

J++

…
J--

How will timing schema work on this example?

heavy heavy

WORKING OF TIMING SCHEMA

2

8

SEQUENCE

ITE ITE

J== 0 K=1
K=10;

…
K <5

J++;

…
J--;

1
5

1 5
1 1

Time(first-if-statement)

= 1 + max(1,5) = 6

Time(second-if-statement)

= 1 + max(5,1) = 6

Estimated worst case

time = 6 + 6 = 12

Actual worst-case time

= 2 +6 = 8

Why?

Where is the overestimate

from?

heavy heavy

CONTROL FLOW GRAPH (CFG)

2

9

J == 0 ??

K = 1 K = 10

K < 5 ??

J++
J --

Y N

Y N

INFEASIBLE PATH IN CFG

3

0
30

J == 0 ??

K = 1 K = 10

K < 5 ??

J++
J --

Y N

Y N

MODELING OF CONTROL FLOW

3

1

• Path-based

• Enumerate paths and find longest path

• Expensive !

• Need to remove longest path if it is infeasible.

• Tree-based

• Bottom-up pass of Syntax Tree

• Timing Schema

• Difficult to integrate infeasible path info

• Integer Linear Programming

• Can take into account certain infeasible path information if available.

• Efficient solvers available e.g. CPLEX

• Forms the back-end of most state-of-the-art timing analyzers.

INTEGER LINEAR
PROGRAMMING

3

2

 ILP: Integer Linear Programming

 Variables and linear constraints on them.

 Cost function (linear) to optimize.

f = 3x + 5y + z

0 <= x, y, z <= 100

x + y + z = 200

x + 2y <= 160

__

Optimal: f = 520; x = 40; y = 60; z = 100

Non-Optimal: f = 480; x = 80; y = 30; z = 90

ILP MODELING

3

3

We are dealing with aggregated execution counts of nodes/edges of CFG.

Basic Blk

e1 e2

e3 e4

x

x = e1 + e2

= e3 + e4

3

4

sum = 0;

for (i=0; i< 10; i++){

if (i % 2 == 0)

sum += i;

if (sum < 0)

break;

}

return sum;

sum = 0; i = 0

i < 10

i % 2 == 0

sum += i

sum<0

i++

return sum

1

2

3

4

5

6

7

yes no

no yes

yes no

break8

3

5

sum = 0; i = 0

i < 10

i % 2 == 0

sum += i

sum<0

i++

return sum

1

2

3

4

5

6

7

yes no

no yes

yes no

break8

Maximize

Time =

c1N1 +c2N2 +c3N3 +c4N4+

c5N5 + c6N6 + c7N7 + c8N8

1 = N1 = E1,2

E6,2 + E1,2 = N2 = E2,3 + E2,7

E2,3 = N3 = E3,4 + E3,5

E3,4 = N4 = E4,5

E3,5 + E4,5 = N5 = E5,6 + E5,8

E5,6 = N6 = E6,2

E5,8 = N8 = E8,7

E8,7 + E2,7 = N7 = 1

E6,2 ≤ 10

N4  5

INFEASIBLE
PATH

3

6

• The break statement is

executed at most once.

• N8 ≤ 1

sum = 0; i = 0

i < 10

i % 2 == 0

sum += i

sum<0

i++

1

2

3

4

5

6

7

yes no

no yes

yes no

break8

return sum

3

7

Blocks 3 and 6 are

never executed in

same loop iteration

N3 +N6 ≤ loopbound

Edges (2,3) and (5,6)

are not executed

together.

E2,3 = E5,7

True

True

False

False

HOW TO EXPRESS THIS INF. PATH CONSTRAINT?

3

8

J == 0 ??

K = 1 K = 10

K < 5 ??

J++
J --

Y N

Y N

True

True

False

False

EXERCISE: WHAT ARE THE
INFEASIBLE PATHS?

3

9

procedure Check_data()

{ int i = 0, morecheck = 1, wrongone = -1, datasize = 10;

while (morecheck)

{

if (data[i] < 0)

{ wrongone = i; morecheck = 0; }

else

if (++i >= datasize) morecheck = 0;

}

if (wrongone >= 0)

{ handle_exception(wrongone); return 0; }

else return i;

}

REVISION OF TIMING
ANALYSIS

Abhik Roychoudhury

National University of Singapore

40

Q1. TIMING SCHEMA

Consider the following program fragment that computes in z the product of x
and y. Thus, x and y serve as inputs to the program fragment, and z serves as
the output of the program fragment. Both the inputs are positive integers,
given as unsigned 8 bit numbers (when represented in binary). Using Timing
Schema WCET analysis method discussed in class, derive the maximum
execution time of the program fragment. Each assignment/return/condition-
evaluation takes 1 time unit.

z = 0;

while (x !=0){

if (x %2 != 0){ z = z +y; }

y = 2 * y; x = x/2;

}

return z;

41

ANSWER TO Q1

T(Program) = T(z= 0) + T(while) + T(return) = 1 + T(while) + 1 = 2 + T(while)

To estimate the time for the while-loop, we need the loop bound LB, which here is log x.

Since x is an 8 bit number, this gives us a loop bound of LB= 8.

T(while) = (LB+1)T(x!=0) + LB*(T(if) + T(y = 2*y) + T(x = x/2))

= 9*1 + 8*(T(if) + 1 +1)

Now, T(if) = T(x%2 !=0) + T(z = z+y) = 1 + 1 = 2

So, T(while) = 9*1 + 8*(2 + 1 + 1) = 9 + 32 = 41 time units

So, T(program) = 2 + T(while) = 2 + 41 = 43 time units.

42

Q2: ILP MODELING

Formulate the maximum execution time estimation of the

program fragment in Question 3(A) using Integer Linear

Programming (ILP). Clearly show the objective function and

all constraints. Your ILP problem should only perform

program path analysis and not micro-architectural

modeling. The estimate produced by your ILP problem

should be as tight as possible.

43

ANSWER TO Q2

Based on the control flow graph, the flow
constraints are as follows. Ni is the
execution count of basic block i, and E i,j is
the execution count of the edge from basic
block i to basic block j

1 = N1 = E1,2

E1,2 + E5,2 = N2 = E2,6 + E2,3

E2,3 = N3 = E 3,4 + E3,5

E3,4 = N4 = E4,5

E4,5 + E3,5 = N5 = E5,2

E2,6 = N6 = 1

The loop bound accounts for the additional
constraint E5,2  8

44

1

2

3 6

4

5

NY

YN

z = 0;

while (x !=0){

if (x %2 != 0){ z = z +y; }

y = 2 * y; x = x/2;

}

return z;

ANSWER TO Q2

The objective function is c1*N1 + c2*N2 + c3*N3 + c4*N4 + c5*N5 + c6 *N6

c1 is the execution cost of basic block 1, c2 is the execution cost of basic block 2 and so on.

Since assignments/conditions/returns all take 1 time unit, we get

c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 2, c6 = 1

The objective function can now be maximized w.r.t. flow constraints and loop bounds. We
will use an ILP solver for this purpose.

The result from the ILP problem given above should be same as the result returned from
timing schema.

45

Q3: COMPARISON

• Also, comment on how the estimate from your ILP

problem will compare with the estimate you produced

using Timing schema.

• Answer: The result from the ILP problem is exactly the

same as the result returned from timing schema. There is

no infeasible path information which can be given to the

ILP solver as a constraint – to get a smaller estimate.

46

