INTELLIGENT TUTORING

CS3213 FSE

National University of Singapore &S

CS3213 FSE course by Abhik Roychoudhury



WHAT WE DID EARLIER

Requirements and Modeling
System Requirements: Use-cases, Scenarios, Sequence Diagrams
System structure: Class diagrams
Discussion on semantics
System behavior: State diagrams

Today
Discussion on the thinking behind your course project

CS3213 FSE course by Abhik Roychoudhury



INTELLIGENT TUTORING

Prof. Abhik Roychoudhury

National University of Singapore



ONLINE TEACHING

MNational University
of Singapore

Lack of personalized feedback?

CS3213 FSE course by Abhik Roychoudhury



MNational University
of Singapore

GOALS OF INTELLIGENT TUTOR

Solution Generation

Generate complete solution of a given problem. Useful for
Completing student’s incorrect attempt
Generate partial hints to guide towards next step
Possible automated grading.

Similar Problem Generation

Given a problem, search for other problems having similar solution
Useful for generating example problems

Parameterized Problem Generation

Create new problems satisfying given solution characteristics.
Useful for generating plagiarism free assighment problems

CS3213 FSE course by Abhik Roychoudhury °



MOTIVATING EXAMPLE

Problem Statement: write a Python program to
count the number of elements smaller than x in a
sorted sequence seq.

def search(x, seq):
for 1 1n range(len(seq)):
if x <= seqli]: search(2, [1,2,3]) I

return 1 search(3, [4,5,6]) 0
return len(seq)

Reference Solution Sample Test Cases



MOTIVATING
EXAMPLE

Consider grading the following student program.

def search(x, seq):
1f seq == () or seq == []:

return O Dedu<_:t grades due to:
elif x > seq[-1]: © raltopass alltest
return len(seq) e.g., search(2, [1,2,3])
else: - Far different from the
for num 1in range(len(seq)): reference solution.
if x > seq[num]: Understanding student
3 programs is usually time-
] continue consuming. /
elif x < seq[num]: é?
return num .°
return O \lEE

Incorrect Student Program HumanTA 0



MOTIVATING EXAMPLE

In fact, only one operator is wrong.

def search(x, seq):
1f seq == () or seq == []:
return O
elif x > seq[-1]:
return len(seq)
else:
for num in range(len(seq)):
1if x > seq[nhum]:
continue
elif x < seq[num]: # Fix: <=
return num
return O

Incorrect Student Program




REPAIR-BASED FEEDBACK
GENERATION

Envision the feedback generation problem as an Automated Program Repair (APR)

problem.

Incorrect
Student

Correctness

Specification

(provided by
tutors)

Program*
—
v

Feedback




HINT GENERATION

Reference
Solutions

Incorrect
Student Program

Test-Suite

CS3213 FSE course by Abhik Roychoudhury

- ]
-
i *I
e . (1) Re-factoring
A
E I “'
. c —  Semantically
I —Y%1 Equivalent
. = $ Solutions
I l
I
T n
" — 4' (2) Block Repair

B8 &

National University
of Singapore



RUNNING EXAMPLE

Problem Statement: Write a Python program which

* Given a sorted sequence seq

* Counts the number of elements smaller than x

Reference Solution

def search(x, seq):

if x <= seq[i]:
return i

return len(seq)

for i in range(len(seq)):

Incorrect Student Program

def search(e, 1lst):
for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=3+1
return len(lst) + 1

CS3213 FSE course by Abhik Roychoudhury



STEP I: REFACTORING

Refactored Correct Solution Incorrect Student Program

def search(x, seq):
for i in range(len(seq)):
if x <= seq[i]:
return i

return len(seq)

def search(e, 1lst):
for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=3j+1
return len(lst) + 1

CS3213 FSE course by Abhik Roychoudhury




CONTROL FLOW GRAPH

x =1; y=0; z = 0; x=ly=0,z=0;
while (x < 10) {
if (x > 5)
y =y + X x<10
else z =z + Xx; Y N
X = x + 1;
} X>5
printf (..); Y N
y=y*x z=z+Xx
rintf(...

Nodes of the graph, basic blocks, are maximal code fragments executed without control
transfer. The edges denote control transfer.

CS3213 FSE course by Abhik Roychoudhury °



STEP 2: VARIABLE MAPPING

of Singapore

Refactored Correct Solution Incorrect Student Program

def search(x, seq):
for i in range(len(seq)):
if x <= seq[i]:
return 1
else:
pass
return len(seq)

def search(e, 1lst):
for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=3+1
return len(lst) + 1

® Dynamic equivalence analysis (trace based)
e Followed by define/use analysis (block based)

{(x & ¢,

CS3213 FSE course by Abhik Roychoudhury

seq © 1lst, 1 & J}



BLOCK MAPPING

def search(x, seq): def search(e, 1st):
for 1 1in range(len(seq)): for j 1in range(len(lst)):
if x <= seq[i]: 1if e < Ist[j]:
return 1 return j
else: else:
pass j=37+1
return len(seq) return len(lst) + 1
Refactored correct program Incorrect student program

LS

> 'é----
. U
LR

Block Mapping .



STEP 3: INFER SPECIFICATION

Refactored Correct Solution Incorrect Student Program

def search(x, seq):
for i in range(len(seq)):
if x <= seq[i]:
return i
else:
pass
return len(seq)

CS3213 FSE course by Abhik Roychoudhury

def search(e, 1lst):

for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=3+1
return len(lst) + 1

seq/1st i/ x <= seq[i] -

2 (1, 2, 31 0 False False
2 [, 2, 3] 1 True False
0 1, 2, 31 0 True True



4. PATCH SYNTHESIS NUS

X <= seq[i] e < 1st[j]

Operator Variable
» Vi <= Vy[v;] Mutation Mutation
Expression "A

Template o (- 15t[§] e <= 1st[j] j < 1st[j]
e == 1St[J] e < 1St[E]
e >= 1st[j] J < 1st[e]

BIock Patch

Final Block Patch e <= 1st[j]

CS3213 FSE course by Abhik Roychoudhury a



Reference Solution Incorrect Student Program
def search(e, 1lst):

def search(x, seq):

return i

return len(seq)

for i in range(len(seq)):
if x <= seq[i]:

for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=3+1
return len(lst) + 1

Refactored Correct Solution

def search(x, seq):
for i in range(len(seq)):
if x <= seq[i]:
return i

return len(seq)

NUS

HNational University
of Singapore

Incorrect Student Program

def search(e, lst):
for j in range(len(lst)):
if e < 1st[j]:
return j
else:
j=j+1
return len(lst) + 1

Incorrect Student Program

1st):

def search(e,

def search(e, 1st):

if e <= 1st[j]:
return j
else:
pass
return len(lst)

for j in range(len(1lst)):

for j in range(len(lst)):
if e < 1st[j]:

return j
else:
j=3j+1

return len(lst) + 1

CS3213 FSE course by Abhik Roychoudhury



AUTOMATED PROGRAM
REPAIR - BACKGROUND

Prof. Abhik Roychoudhury

National University of Singapore



FIXING BUGS: HOW BAD IS IT?

90% of cost and resources in software project

Legacy Cirisis!

Tarsnap

Online backups for the truly paranoid

Tarsnap
News
About
Legal
Infrastructure
Bug Bounty
Winners

Design

Tarsnap Bug Bounties

According to Linus' Law, "given enough eyeballs, all bugs ar
This is one of the reasons why the Tarsnap client source code
available; but merely making the source code available doesn't
anything if people don't bother to read it.

For this reason, Tarsnap has a series of bug bounties. Sim
bounties offered by Mozilla and Google, the Tarsnap bug bount
an opportunity for people who find bugs to win cash. Unlike thos
the Tarsnao bua bounties aren't limited to securitv buas. Depen

-
m Z lla About Us Community Map Our Projects

Bug Bounty Program

Introduction

The Mozilla Security Bug Bounty Program is designed to encourage security research in Mozilla softwz
and to reward those who help us create the safest Internet clients in existence.

Many thanks to Linspire and Mark Shuttleworth, who provided start-up funding for this endeavor.

General Bounty Guidelines

CS3213 FSE course by Abhik
Roychoudhury

NUS

National University
of Singapore






AUTOMATED PROGRAM REPAIR

Buggy
Program

Patched
Program

Correctness
Criterion

Weak description of intended behavior / correctness criterion e.g. tests
Weak applicability of repair techniques e.g. only overflow errors
Large search space of candidate patches for general-purpose repair tools.

Patch suggestions and Interactive Repair

CS3213 FSE course by Abhik Roychoudhury

B &

NUS

National University
of Singapore



DIVISION OF LABOR

Syntactic Program Repair

Semantic Program Repair

Where to fix, which line?
Generate patches in the candidate line

Validate the candidate patches against
correctness criterion.

CS3213 FSE course by Abhik Roychoudhury

Where to fix, which line(s)?

What values should be returned by
those lines, e.g. <inp ==1, ret== 0>

What are the expressions which will
return such values?



GENPROG — REPAIR VIA SEARCH (ACK:
CLAIRE LE GOUES, 6 SLIDES)

______________________________

: mutat O , |
¥ g O (@
O O

& @O SOREELN =

Buggy I I O O O I O . Re:ire
2O 40 -
<0 @0 @
(ISen O Gen_2j i_gl\_?.ign__:

CS3213 FSE course by Abhik Roychoudhury



INPUT EVALUATE FITNESS

DISCARD

VAN <\
~

ACCEPT

—

c

v

=

=

Ack: Claire Le Goues (CMU)

CS3213 FSE course by Abhik Roychoudhury

OUTPUT



CANDIDATE PATCH

An individual is a candidate patch or set of changes
to the input program.

A patch is a series of statement-level edits:
delete X

replace X withY

insertY after X.

Replace/insert: pick Y from somewhere else in
the program.

CS3213 FSE course by Abhik

Roychoudhury

Ack: Claire Le Goues (CMU)



ged (4,2)

gcd (1071,1029)

21

gcd (0,55)
55

(looping forever)

1 void gcd(int a, int b)
2 if (a == 0) {

3 printf (“%d”, b);
4 }

5 while (b > 0) {
6 if (a > b)

7 a=a-D>b;

8 else

9 b=Db - a;
10 }

11 printf(“%d4d”, a);
12 return;

13 }

CS3213 FSE course by Abhik

Roychoudhury

Ack: Claire Le Goues (CMU)



PROGRAM REPRESENTATION

if (a

{block}

{block}

CS3213 FSE course by Abhik Roychoudhury Ack: Claire Le Goues (CMU)




{block} I

\ 1E U

-

Ack: Claire Le Goues (CMU)

CS3213 FSE course by Abhik

Roychoudhury



Input: VVVIX

{block}

Ack: Claire Le Goues (CMU)

An editis:

* Insert statement X
after statementY

* Replace statement X
with statement Y

* Delete statement X

CS3213 FSE course by Abhik

Roychoudhury



OVER-FITTING IN REPAIR U2

Avoid generating programs like

if (inputl) return outputl

else if (input2) return output?2

else if (input3) return output3
ARTIFACTS

(symbolic
formulae)

Vulnerable
Program
brogram

Generalize beyond the provided tests using symbolic
reasoning.

CS3213 FSE course by Abhik Roychoudhury o




COMPARISON

Syntactic Program Repair Semantic Program Repair

4 N

I Where to fix, which line? | Where to fix, which line(s)?
2. Generate patches in the candidate line 2. What values should be returned by
those lines, e.g. <inp ==1, ret== 0>

3. Validate the candidate patches against
correctness criterion. 3. What are the expressions which will
return such values?

CS3213 FSE course by Abhik Roychoudhury a




STATE-OF-THE-ART

Code Buggy
corpus program

Fault
localization

Machine

learning

Model| of Generate repair Passing & Extract
patches candidate failing tests constraints

Validate repair Synthesize code via
candidate constraint solving

Learning-aided repair Heuristic repair Constraint-based repair

Ack: Figure from Reading in our class, “Automated Program Repair” by Le Goues,
Pradel, Roychoudhury, article in Communications of the ACM, 2019.

CS3213 FSE course by Abhik Roychoudhury a



///1 int triangle(int a, int b, int c) { ‘\\\

if (a <=0 || b<=20 |] ¢ <= 0)
return INVALID;

if (a == b && b == c)
return EQUILATERAL;

if fa ==Db || b != c) //| bug!

return I1505CELES; . .
e SN Traverse all mutations of line 6, and check
)

/K)Oi)\lo‘\(ﬂ»bwl\)

Hard to generate correct fix since a==c
never appears elsewhere in the program.

OR
| -l -1 -1 INVALID pass
2 | 1 | EQUILATERAL pass .
Generate the constraint
3 2 2 3  ISOSCELES pass
f(2,2,3) 7f(2,3,2) /f(3,2,2)n—f(2,3,4)
4 2 3 2 ISOSCELES fail
2 2 ISOSCELES fail And get the solution
6 2 3 4 SCALENES fail
f(a,b,c) = (a == bl|lb == c || a== c)

CS3213 FSE course by Abhik Roychoudhury @



APPLICATION IN
EDUCATION: FEASIBILITY

Prof. Abhik Roychoudhury

National University of Singapore



NOVEL APPLICATIONS: INTELLIGENT
TUTORING

rrrrrrrrrr

Use program repair in intelligent tutoring systems to give the
students’ individual attention.

Conducted user studies

CS3213 FSE course by Abhik Roychoudhury



DATASET USED IN STUDIES

National University

Lab: Programming assignments

Lab # Prog Topic

Lab3 63 Simple Expressions, printf, scanf

Lab4 117 Conditionals

Lab5 82 Loops, Nested Loops

Lab6 79 Integer Arrays

Lab7 71 Character Arrays (Strings) and Functions
Lab8 33 Multi-dimensional Arrays (Matrices)

Lab9 48 Recursion

Lab 10 53 Pointers

Lab 11 55 Algorithms (sorting, permutations, puzzles)
Lab 12 60 Structures (User-Defined data-types)

CS3213 FSE course by Abhik Roychoudhury a



91ey Jiedoy

CLOSE TO INCORRECT VS CLOSETO
CORRECT

~
(6)]
1

50 -

25

Close to Correct

Group I High failure rate [l Low failure rate
Close to Incorrect (test failure <
(test failure >= 50%) 50%)

.JJ]JM 1

lab3 Lab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Lab11 Lab12 Total @



ALMOST INCORRECT VS ALMOST CORRECT

Group M High failure rate [l Low failure rate

Almost
Correct

aley
Jiedoy

Almost
Incorrect

The fact that student programs are often
significantly incorrect makes it difficult to

lab3 Lab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Labi1 Lab12 Total

fix those programs.

CS3213 FSE course by Abhik Roychoudhury

NUS

National University
of Singapore



PARTIAL REPAIR AS A HINT

Control-flow hints
change of if-conditionals
change of loop-exit conditions

Data-flow hints

$ |

feedback

adding/deleting statements

Conditional data-flow hints:

if (/* guard condition */) {

/* a data-flow hint */

4 N

NB: {Conditional data-flow hints} © {Data-flow hints}



TAILORED REPAIR STRATEGY

Look for the following in parallel
a control-flow hint
a conditional data-flow hint
Benefits
Reduce the search space of each repair tool
Combine multiple repair tools in a complementary way
A conditional data-flow hint can be composed of
a data-flow hint from search-based repair

a guarded condition from semantic repair

if (/* guard condition */) {
/* a data-flow hint */




B &

TAILORING REPAIR POLICY

‘ A
partial ‘

repair v
) P: # of passing tests
I : F: # of failing tests
57l %

Partial Repair: (all previously passihg tests) + (at least one previously failing test)

CS3213 FSE course by Abhik Roychoudhury Q



TWO-STEP REPAIR

Test |
Test 2
Test 3
Test 4
Test 5

Test |
1 Test 2
Test 3
Test 4
Test 5
+ if (true) { + if (E) {
+ S’ + S’
+ } else { + } else {
S; S;
+} +}

CS3213 FSE course by Abhik Roychoudhury

Test |
Test 2
Test 3
Test 4
Test 5



Test |
Test 2
Test 3
Test 4
Test 5

TWO-STEP REPAIR

Test |
| Test 2 |
Test 3
Test 4
Test 5
+ if (true) { + if (E) {
+ S’ + S’
+ } else { + } else {
S; S;

b b

Test |
Test 2
Test 3
Test 4
Test 5



ajey Jiedoy

NEW RESULT

84% improvement

Previous B New

80 -

60

40

20

O_

Lab 3

Llab4 Lab5 Lab6 Lab7 Lab8 Lab9 Lab10 Lab11 Lab12 Total



CONCLUSION

Out-of-the-box application of APR tools to ITS is infeasible
Positive result after adopting

a new repair policy accepting partial repairs

a new repair strategy

Further improvement seems possible by refining repair
operators (e.g., strings and arrays)

Reading
https://www.comp.nus.edu.sg/~abhik/pdf/FSE | 7.pdf



https://www.comp.nus.edu.sg/~abhik/pdf/FSE17.pdf

CONCLUSION

User study:
TA’s grading performance improves.

Novice students do not seem to know how to effectively make
use of repairs.

Future work:

How to transform repairs into hints more comprehensible to
novice students?

We share our dataset and toolset

https://github.com/jyi/ITSP



https://github.com/jyi/ITSP

TUTORING — BEYOND REPAIR

Good teaching is more a giving of
right questions than a giving of right
answers.

— Je-seg Albers —

CS3213 FSE course by Abhik Roychoudhury



