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WHAT WE DID EARLIER
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UML as modeling notation

◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Discussion of the thinking behind your course project

◦ Today

◦ Start discussion on software engineering practices for code instead of models 

◦ Static analysis and vulnerability detection: also touches upon Secure SE



STATIC ANALYSIS

• Do not try to generate tests which show vulnerabilities.

• Do not try to explore paths in the program

• Analysis is path insensitive.

• Instead treat the source code as an artifact, and analyze the source-code directly.

• Since analysis results from different paths get merged at control flow merge points –

analysis output is approximate.

• Lot of false alarms !
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R1  R2



SIMPLE EXAMPLE
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1. n = 0;

2. while (n < large_number){

3. n = n + 1

4. }

5. // exit code

Concrete execution:

Value of a variable at a program point

Abstract execution

Approximate value of a variable at a program point

[An example approximation is via intervals of possible variable values]

Iteration 1:    Valn,2 =  [0,0]

Iteration 2:    Valn,2 =  [0,1]

Iteration 3:    Valn,2 =  [0,2]

…



WHAT IS GOING ON?
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Newer and newer values are possible by going through the loop.

As a result, the interval gets expanded.

We should approximate the set of all possible values in abstract execution.



ANOTHER EXAMPLE
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1. input x;

2. while (isEven(x)){

3. x = x / 2;

4. }

5. x = 4*x;

6. … // exit code

Abstract execution

Just keep track in each location whether

x is even or odd

This is different from the interval representation.



ABSTRACT EXECUTION
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1. input x;

2. while (isEven(x)){

3. x = x / 2;

4. }

5. x = 4*x;

6. … // exit code

Can abstract execution ensure that the value of x in line 6 is even?

You can only keep track of whether x is odd or even.



INFERENCE ACHIEVED
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Repeated propagation of sets of abstract values until the estimates stabilize at each 

program point.

We can infer that the end value of x is even, provided exit code does not touch the 

value of x.

Continue the estimation of abstract values until they do not change any more in 

any program point. This is when the computation has reached a fixed-point.

This provides the final “inference”.



WHY STATIC ANALYSIS?

• Sample vulnerable code
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void foo(){

char buf[80];

strcpy(buf, gethostbyaddr(…)->hp_hname);

}

Could write past the end of buf.

Typically allows the attacker to execute arbitrary code.



WHY STATIC ANALYSIS?

• Sample Application

• Detect buffer Overruns: Concentrate on string variables in the program.

• If s is a string variable, define

• Alloc(s) == Number of bytes allocated for the string s

• Len(s) == Number of bytes used by string s

• Both Alloc(s) and Len(s) are sets

• Alloc(s) captures possible values of allocated bytes to s 

• Len(s) captures possible values of length of  s

• Captures the set of values of Len(s) and Alloc(s) at any program point – over-approximation!
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CONSTRAINTS

• Capture Len(s) and Alloc(s)  by ranges

• Ranges of the form [m,n]

• Constraints of the form

• X Y, where X and Y are range variables.

• Example constraint

• strcpy(dst, src)   len(src)   len(dst)
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EXAMPLES
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char s[n]                     {n} Alloc(s)

s = “foo”                     {4}  Len(s)  {4} Alloc(s)

fgets(s,n,...);               [1, n]  Len(s)

sprintf(dst,"%d",n);     [1, 20]  Len(dst)

Checking Len(s) ≤ Alloc(s)  for all string s at the end of analysis

Suppose  Len(s) = [a,b]  and Alloc(s)  = [c,d]

• If  b ≤ c, s never overflows the buffer

• If a > d, buffer over-run always occurs

• If the two ranges overlap, there is a possibility of buffer over-run.



EXAMPLE

char buf[128];

while (fgets(buf,128,stdin)){

if (!strchr(buf, ‘\n’)){

char error[128];

sprintf(error, “Line long %s\n”, buf);

die(error);

}

}
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[128,128] Alloc(buf)

[1, 128]   Len(buf)

[128, 128] Alloc(error)

Len(buf) +11  Len(error)

Collect such constraints from the lines of the program.

Solve the constraint system and check Len(s)  ≤  Alloc(s)

You could also keep track of ranges of buffers and over-approximate these 

ranges using abstract execution.



PART 11 - PROGRAM 
REPRESENTATIONS
CS3213 FSE COURSE

Prof.  Abhik Roychoudhury

National University of Singapore

(Ack: Xiangyu Zhang & Aditya Mathur, Purdue for some slides)
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WHY PROGRAM 
REPRESENTATIONS

• Original representations

• Source code (cross languages).

• Binaries (cross machines and platforms).

• Source code / binaries + test cases.

• They are hard for machines to analyze.

• Software is translated into certain representations before analyses are applied.

15



CONTROL FLOW GRAPH

• The most commonly used program representation.
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PROGRAM REPRESENTATION: BASIC BLOCKS

A basic block in  program P is a sequence of consecutive statements 

with a single entry and a single exit point.  Thus a  block has  unique 

entry and  exit points. 

Control always enters a basic block at its entry point and exits from its exit 

point. There is no possibility of exit or a halt at any point inside the basic 

block except at its exit point. The entry and exit points of a basic block 

coincide when the block contains only one statement.
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CONTROL FLOW GRAPH (CFG)

A control flow graph (or flow graph) G is defined as a finite set N of nodes and a 

finite set E of edges.   An edge (i, j)  in E connects two nodes ni and nj in N.  We 

often write G= (N, E) to denote a  flow graph G with nodes given by  N  and 

edges by  E.
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CONTROL FLOW GRAPH (CFG)

In  a flow graph of a program, each basic block  becomes a node and edges are 

used to indicate  the  flow of control between  blocks. 

An edge (i, j) connecting basic blocks bi and bj implies that control can  go 

from block bi to block bj.  

We also assume that there is a node labeled Start in N that has no incoming 

edge, and another node labeled End, also in N,  that has no outgoing edge.
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CONTROL FLOW GRAPH
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x = 1; y = 0; z = 0;

while (x < 10){

if (x > 5)

y = y + x;

else  z = z + x;

x = x + 1;

}

printf(…);

x =1; y = 0; z = 0;

x < 10

x > 5

y = y +x z = z + x

Y N

x = x +1
printf(…)

Y N

Nodes of the graph, basic blocks, are maximal code fragments executed without control 

transfer. The edges denote control transfer.



CFG CONTINUED
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procedure Check_data()

{         <S1>

L:     while (morecheck)

LB:   {

if  (data[i] < 0)

A:                { <S2> } 

else

B:            if  (++i >= datasize)   

<S3>;

}

if (wrongone >= 0)

C:               { <S4> }

C’:     else  return i;

}

morecheck

data[i]<0

++i >= datasize<S2>

<S3>

wrongone>=0

<S4>

return i

Y N

Y N

Y N

Y N

<S1>
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PATHS

Consider a flow graph G= (N, E). 

A sequence of k edges, k>0,  (e_1, e_2, … e_k) , 

denotes a path  of length k through the flow graph if the following  sequence 

condition holds.

Given that np, nq, nr, and ns are nodes belonging to N, and 

0< i<k, if  ei = (np, nq) and ei+1 = (nr, ns) then nq = nr. 

Complete path: a path from start to exit

Subpath: a subsequence of a complete path
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PATHS: INFEASIBLE PATHS

p1= ( Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)

p2= (Start, 1, 2, 4,  5, 7,  9, End)

A path  p  through  a flow graph for program 

P is considered feasible if there exists at least 

one test case which when input to P causes p 

to be traversed.
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INFEASIBLE PATH DETECTION

• Important problem for reducing test suite size.

• Can also be useful for accurate analysis results, or getting 

an accurate understanding of program behavior

• Useful to find out smallest infeasible path patterns.

• But, first how do we even test that a given path is infeasible.
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TESTING FOR INFEASIBILITY

J == 0  ??

K = 1 K = 10

K  < 5  ??

J++
J --

Y N

Y N

K   5

K  5  K=1



COMMON MISTAKE AND WAY 
FORWARD
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Infeasible path is different from dead code.

See the example in previous slide.

We need an automated mechanism to check whether a given path is infeasible. 

We will do that later in this module.

We can always have an incomplete detection of infeasible paths using patterns 

How ?

Find conflicting pairs ??

- (Assignment, Branch) or AB conflict

- (Branch, Branch) or BB conflict



CONFLICT RELATIONS

x := 0

…

if ( x > 2 )

… …

e

B

no assignment to x

x == 0 AND x > 2

Assignment-Branch

(AB) conflict
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CONFLICT RELATIONS

if ( x > 2 )

… …

e2

no assignment to x

x < 1 AND x > 2

Branch-Branch

(BB) conflict

if ( x < 1 )

…

e1

28



LIMITATION

var := expr

constant

if ( c )

… …

T F

• Constant-valued RHS only
• Complex expressions not checked for feasibility

var constant>

<
…

29



LIMITATION

• Pairwise conflicts y := 2

…

if ( x > 3 )

… …

x := y

…Also, RHS

not a constant
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x = flag

if ( x > 3 ) B1

z = z + 1

if ( y == 4 )

y = y + 1 x = 1

if ( x < 2 )

z = z ∕ 2 z = z – 1

y = y + x - z

if ( y > 0 )

z = x + y z = –1

return z

B2 B3

B4

B5 B6

B7

B8 B9

B10

B11 B12

B13

AB Conflict:

( B6, B7 → B9 )

BB Conflict:

( B1 → B2, B7 → B8 )
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Even utilizing such infeasible path 

information for static analysis is useful, even if 

the infeasible path detection is not fully 

automated. 

Y N

N

N

N

Y

Y

Y



(INTRA-PROCEDURAL) CFG
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• nodes = regions of source code (basic blocks)

 Basic block = maximal program region with a single entry and single exit 

point

 Often statements are grouped in single regions to get a compact model

 Sometime single statements are broken into more than one node to 

model control flow within the statement

• directed edges = possibility that program execution proceeds from the end 

of one region directly to the beginning of another



INTER-PROCEDURAL CFG

33

You can create  a separate copy of each procedure f, for each call site of f

This is only to make sure that for each copy, we know the site to return. 

main(){                    f(){

…                            …

f();                        g();

…                            …

g();                        }

…

}

main()

…

f()

…

g()

f()

g()

g()

Separate copy of g()



INTER-PROCEDURAL  CONTROL 
FLOW GRAPH (ICFG)

• Besides the normal intraprocedural control flow graph, additional edges are 

added connecting

• Each call site to the beginning of the procedure it calls.

• The return statement back to the call site.

1:     for (i=0; i<n; i++) {

2:        t1= f(0);

3:        t2 = f(243); 

4:        x[i] = t1 + t2 + t3;

5:    }

6:  int  f (int v) {

7:    return (v+1);

8:  } 

1

2

3

4

7
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CALL GRAPH (CG)

• Each node represents a function; each edge 

represents a function invocation

void A( ) {

B( );

C( );

}

void C ( ) {

D( );

A( );

} 

void B( ) {

L1:   D( );

L2:   D( );

}

void D ( ) {

} 

A

C
B

D

35



TOOLS

• C/C++: LLVM, CIL

• Java: SOOT, Wala

• Binary: Valgrind, Pin
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PART III - DATAFLOW ANALYSIS
CS3213 FSE COURSE

Prof.  Abhik Roychoudhury

National University of Singapore

(Ack: Mauro Pezze, University of Lugano, for a couple of slides, and Ilya Sergey, NUS, 

for one example).
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CONCEPTS LEARNT

• Understand basics of data-flow in programs and the related 
concepts (def-use pairs, dominators…)

• Understand some analyses that can be performed with the 
data-flow model of a program

• The data flow analyses to build models

• Analyses that use the data flow models

• Use of fixed-point analysis: Static analysis of source code

38



CONTROL FLOW GRAPH
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x = 1; y = 0; z = 0;

while (x < 10){

if (x > 5)

y = y + x;

else  z = z + x;

x = x + 1;

}

printf(…);

x =1; y = 0; z = 0;

x < 10

x > 5

y = y +x z = z + x

Y N

x = x +1
printf(…)

Y N

Nodes of the graph, basic blocks, are maximal code fragments executed without control 

transfer. The edges denote control transfer.



USE OF CFG
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All of the subsequent analysis discussed is applied on the Control flow graph of a 

program. 

The nodes of the graph are basic blocks, and the edges denote control 

transfer.

So the computation of the data flows will propagate along the edges of the 

control flow graph. 

As a shorthand, while examining the examples, we may show it statement 

by statement, even though the equations are for nodes in CFG.



DEF-USE PAIR
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A def-use (du) pair associates a point in a program where a 

value is produced with a point where it is used

Definition: where a variable gets a value

Variable declaration  (often the special value 

“uninitialized”)

Variable initialization

Assignment

Values received by a parameter 

Use: extraction of a value from a variable

Expressions

Conditional statements

Parameter passing

Returns



DEF-USE PAIR
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DEF-USE PAIR
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• A definition-clear path is a path along the CFG from a 

definition to a use of the same variable without  another 

definition of the variable between

• If, instead, another definition is present on the path, then the 

latter definition kills the former

• A def-use pair is formed if and only if there is a definition-

clear path between the definition and the use



DEFINITION-CLEAR OR KILLING 
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CALCULATING DEF-USE PAIRS
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• Definition-use pairs can be defined in terms of paths in the program control flow 

graph:

• There is an association (d,u) between a definition of variable v at d and a use of 

variable v at u iff 

• there is at least one control flow path from d to u 

• with no intervening definition of v. 

• vd reaches u (vd is a reaching definition at u).  

• If a control flow path passes through another definition e of the same variable v, 

ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a graph can be 

exponentially larger than the number of nodes and edges. 

• Practical algorithms therefore do not search every individual path. Instead, they 

summarize the reaching definitions at a node over all the paths reaching that node.



COMPUTING DATAFLOW

• An efficient algorithm for computing reaching definitions (and several other properties) is 
based on the way reaching definitions at one node are related to the reaching definitions at 
an adjacent node.  

• Suppose we are calculating the reaching definitions of node n, and there is an edge (p,n) 
from an immediate predecessor node p.  

• If the predecessor node p can assign a value to variable v, then  the definition vp reaches 
n.  We say the definition vp is generated at p.

• If a definition vp of variable v reaches a predecessor node p, and if v is not redefined at 
that node (in which case we say the vp is killed at that point), then the definition is 
propagated on from p to n.

46

p

n



DATAFLOW EQUATIONS
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DATAFLOW EQUATIONS
- MERGING OF FLOWS
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REACHING DEFINITIONS: 
RECURSIVE EQUATIONS
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Reach(n) =   ReachOut(m)

mpred(n)

ReachOut(n) = (Reach(n) \ kill (n))  gen(n)

gen(n) = { vn | v is defined or modified at n }

kill(n) = { vx | v is defined or modified at x, x≠n }



ILLUSTRATION
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Parameters x, y

int tmp

y != 0

tmp = x %y

x = y

y = tmp
return x

Y N

B1

B2

B3
B4

ReachB1 = {}

ReachOutB1 = {} –{} U {x1,y1,tmp1}

ReachB2 = ReachOutB1 U ReachOutB3

={x1, y1, tmp1} U {}

= {x1, y1, tmp1}

ReachOutB2 = ReachB2 –{} U{}

= ReachB2

ReachB3 = ReachOutB2

ReachOutB3 = ReachB3 – {x1,y1,tmp1} 

U{x3,y3,tmp3}. = {x3, y3, tmp3}

ReachB4 = ReachOutB2

ReachOutB4 = ReachB4



ILLUSTRATION
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Parameters x, y

int tmp

y != 0

tmp = x %y

x = y

y = tmp
return x

Y N

B1

B2

B3
B4

ReachB1 = {}

ReachOutB1 = {} –{} U {x1,y1,tmp1}

ReachB2 = ReachOutB1 U ReachOutB3

={x1, y1, tmp1} U {x3,y3,tmp3}

= {x1, y1, tmp1,x3,y3,tmp3}

ReachOutB2 = ReachB2 –{} U{}

= ReachB2

ReachB3 = ReachOutB2

ReachOutB3 = ReachB3 – {x1,y1,tmp1} 

U{x3,y3,tmp3}. = {x3, y3, tmp3}

ReachB4 = ReachOutB2

ReachOutB4 = ReachB4



AVAILABLE EXPRESSIONS

• An expression e = x op y is available at a program point p, if 

• on every path from the entry node of the graph to node p, e is computed at 
least once, and

• And there are no definitions of x or y since the most recent occurance of e 
on the path
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DATA FLOW FACTS

Is expression e available?

Facts:

a + b is available?

a * b is available?

a + 1 is available?
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GEN AND KILL

• What is the effect of each

x = a + b

stmt gen kill

y = a * b

a = a + 1

a + b

a * b

a + b

a * b

a + 1

statement on the set of facts?
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∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

{a + b}

{a + b}

COMPUTING AVAILABLE 
EXPRESSIONS
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TERMINOLOGY

• A join point is a program point where two branches meet

• Available expressions is a forward, must problem

• Forward = Data Flow from in to out

• Must = At joint point, property must hold on all paths that are 

joined.

56



AVAILABLE EXPRESSIONS:
EQUATIONS

57

Avail (n) =  AvailOut(m) 

mpred(n)

AvailOut(n) = (Avail (n) \ kill (n))  gen(n)

gen(n) = { exp | exp is computed at n }

kill(n) = { exp | exp has variables assigned at n }



LIVENESS ANALYSIS

• A variable v is live at a program point p if 

• v will be used on some execution path originating from p before v is 

overwritten
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LIVENESS ANALYSIS: EQUATIONS

• A variable v is live at a program point p if 

• v will be used on some execution path originating from p before v is 

overwritten

59

out(n) =  in(m) 

msucc(n)

in(n) = (out(n) \ kill (n))  gen(n)

gen(n) = { v | v is used at n }

kill(n) = { v | v is modified at n }



GEN AND KILL

• What is the effect of each

x = a + b

y = a * b

a = a + 1

stmt gen kill

y > a

a, b

a, b

a, y

a

x

y

a

statement on the set of facts?
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LIVENESS ANALYSIS:
EQUATION TO ALGORITHM
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for all n{

in[n] := Ø, out[n] := Ø

}

repeat until no change in ‘in’ and ‘out’ {

for all n{

out[n] := ∪m∈succ[n]in[m] 

in[n] := use[n] ∪ (out[n] - def[n]) 

}

}

out(n) =  in(m) 

msucc(n)

in(n) = (out(n) \ kill (n))  gen(n)

gen(n) = { v | v is used at n }

kill(n) = { v | v is modified at n }



EXAMPLE 

62



ITERATIVE ANALYSIS: 1
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ITERATIVE ANALYSIS: 2
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ITERATIVE ANALYSIS: 3
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ITERATIVE ANALYSIS: 4
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ITERATIVE ANALYSIS: 5
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LIVENESS: ALGORITHM 
EFFICIENCY

for all n{  in[n] := ;  out[n] := ; }

w := new queue with all nodes;

Repeat until w is empty{

n := w.dequeue();

old_in := in[n];

out[n] := ∪m∈succ[n]in[m];

in[n] := use[n] ∪ (out[n] - def[n])

if  (old_in != in[n]){

for all m in pred[n], w.enqueue(m); 

}

}  

68



WORKLIST ALGORITHM

• Initially all nodes are on the work list, and have default values 

• Default for “any-path” problem is the empty set, default for “all-path” 

problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty

• Pick any node n on work list; remove it from the list

• Apply the data flow equations for that node to get new values

• If the new value is changed (from the old value at that node), then 

• Add successors (for forward analysis) or predecessors (for backward 

analysis) on the work list

• Eventually the work list will be empty (because new computed 

values = old values for each node) and the algorithm stops. 
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CLASSIFICATION OF ANALYSES
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• Forward/backward: a node’s set depends on that of its 

predecessors/successors

• Any-path/all-path: a node’s set contains a value iff it is coming from any/all of 

its inputs

Any-path () All-paths ()

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”



REACHING DEFINITIONS

• A definition of a variable v is an assignment to v

• A definition of variable v reaches point p if

• There is no intervening assignment to v

• Also called def-use information

• What kind of problem?

• Forward or backward? Forward

• May or must?  May or any-path

71



ITERATIVE SOLUTION OF
RECURSIVE EQUATIONS

72

• Initialize values (first estimate of answer)

• For “any path” problems, first guess is “nothing” (empty set) at each node

• For “all paths” problems, first guess is “everything” (set of all possible values = union of all 
“gen” sets)

• Repeat until nothing changes

• Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution where every new calculation produces the same 
value as the previous guess.



ILLUSTRATION: RECAP
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Parameters x, y

int tmp

y != 0

tmp = x %y

x = y

y = tmp
return x

Y N

B1

B2

B3
B4

ReachB1 = {}

ReachOutB1 = {} –{} U {x1,y1,tmp1}

ReachB2 = ReachOutB1 U ReachOutB3

={x1, y1, tmp1} U {}

= {x1, y1, tmp1}

ReachOutB2 = ReachB2 –{} U{}

= ReachB2

ReachB3 = ReachOutB2

ReachOutB3 = ReachB3 – {x1,y1,tmp1} 

U{x3,y3,tmp3}. = {x3, y3, tmp3}

ReachB4 = ReachOutB2

ReachOutB4 = ReachB4



ILLUSTRATION: RECAP
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Parameters x, y

int tmp

y != 0

tmp = x %y

x = y

y = tmp
return x

Y N

B1

B2

B3
B4

ReachB1 = {}

ReachOutB1 = {} –{} U {x1,y1,tmp1}

ReachB2 = ReachOutB1 U ReachOutB3

={x1, y1, tmp1} U {x3,y3,tmp3}

= {x1, y1, tmp1,x3,y3,tmp3}

ReachOutB2 = ReachB2 –{} U{}

= ReachB2

ReachB3 = ReachOutB2

ReachOutB3 = ReachB3 – {x1,y1,tmp1} 

U{x3,y3,tmp3}. = {x3, y3, tmp3}

ReachB4 = ReachOutB2

ReachOutB4 = ReachB4



ABSTRACT DOMAIN FOR FLOW 
ANALYSIS

75

• Flow equations must be monotonic

• Initialize to the bottom element of a 
lattice of approximations

• Each new value that changes must move 
up the lattice

• Typically: Powerset lattice

• Bottom is empty set, top is universe

• Or empty at top for all-paths analysis

Monotonic: y > x implies f(y) ≥ f(x)

(where f is application of the flow

equations on values from successor

or predecessor nodes, and “>” is

movement up the lattice)
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• Arrays and pointers introduce uncertainty: 

Do different expressions access the same storage?

• a[i] same as a[k] when i = k

• a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to the kind of 

analysis

• Any-path: gen sets should include all potential aliases and kill set 

should include only what is definitely modified

• All-path: vice versa



NATURE OF ANALYSES
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• Intraprocedural

• Within a single method or procedure

• as described so far

• … or Inter-procedural

• Across several methods (and classes) or procedures

• Cost/Precision trade-offs for inter-procedural analysis are 

critical, and difficult

• context sensitivity

• flow-sensitivity



CONTEXT-SENSITIVE ANALYSIS
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FLOW-SENSITIVE ANALYSIS
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• Reach, Avail, etc. were flow-sensitive, intraprocedural 
analyses

• They considered ordering and control flow decisions

• Within a single procedure or method, this is (fairly) cheap —
O(n3) for n CFG nodes

• Many interprocedural flow analyses are flow-insensitive

• O(n3) would not be acceptable for all the statements in a 
program!

• Though O(n3) on each individual procedure might be ok

• Often flow-insensitive analysis is good enough ... consider type 
checking as an example



SUMMARY
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• Data flow analysis detect patterns on programs (and their Control Flow Graph)

• Nodes initiating the pattern

• Nodes terminating it

• Nodes that may interrupt it

• Often, but not always, about flow of information (dependence)

• Pros:

• Can be implemented by efficient iterative algorithms

• Widely applicable (not just for classic “data flow” properties)

• Limitations:

• Unable to distinguish feasible from infeasible paths

• Merging of estimates from paths:  approximation in reporting, false alarms ... 

• Key concern for industrial usage, though widely used in programming environments.


