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WHAT WE DID EARLIER
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◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Discussion of the thinking behind your course project

◦ Static analysis and vulnerability detection: Secure SE

◦ Software Debugging

◦ Today

◦ White-box Testing



NO MODEL MAY BE AVAILABLE.
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PROGRAMMING

Creativity Precision+
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APPROACHES TO TESTING

• Black Box/Functional/Requirements based – treat requirements as rule 

• White Box/Structural/Implementation based - today
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FUNCTIONAL TESTNG
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Independently  

Testable 
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Model
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Test 
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Specifications

Test 

Cases

Need to consider combinations of values / 
models from different testable features.

Deal with combinatorial explosion,
Techniques exist for handling these.



WHITE-BOX TESTING
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System Outputs

Expected

Results

Test 

Plan Test
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Pass

Fail

Stop?

Testing that takes into account the internal mechanism of a system 

or component.

— IEEE

 aka Structural Testing, Glass Box Testing



WHITE BOX/STRUCTURAL TEST DATA 
SELECTION

• Coverage based

• Control- flow  and data-flow criteria.

• Fault-based 

• e.g., mutation testing

• Failure-based

• domain and computation based 

• use representations created by symbolic 

execution
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STRUCTURAL TESTING

Structural Coverage based on control-flow criteria
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LEARNING OBJECTIVES

• Understand rationale for structural testing 

• How structural (code-based or glass-box) testing complements 

functional (black-box) testing

• Recognize and distinguish basic terms

• Adequacy, coverage

• Recognize and distinguish characteristics of common 

structural criteria

• Understand practical uses and limitations of structural 

testing
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WHY STRUCTURAL (CODE-
BASED) TESTING?

• One way of answering the question “What is missing in our 
test suite?”

• If part of a program is not executed by any test case in the 
suite, faults in that part cannot be exposed

• But what’s a “part”?

• Typically, a control flow element or combination: 

• Statements (or CFG nodes), Branches (or CFG edges)

• Fragments and combinations: Conditions, paths 

• Complements functional testing: Another way to recognize 
cases that are treated differently

• Recall fundamental rationale: Prefer test cases that are treated 
differently over cases treated the same
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NO GUARANTEES

• Executing all control flow elements does not guarantee 

finding all faults

• Execution of a faulty statement may not always result in a failure

• The state may not be corrupted when the statement is 

executed with some data values

• Corrupt state may not propagate through execution to 

eventually lead to failure

• What is the value of structural coverage?

• Increases confidence in thoroughness of testing

• Removes some obvious inadequacies
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EXAMPLE- ERRORS GETTING MASKED

Questions for the class

When will the effects of the 

change be seen?

When will the effects of the 

change be masked?
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STRUCTURAL TESTING 
COMPLEMENTS

FUNCTIONAL TESTING

• Control flow testing includes cases that may not be 

identified from specifications alone 

• Typical case: implementation of a single item of the specification 

by multiple parts of the program

• Example: hash table collision  (invisible in interface spec) 

• Test suites that satisfy control flow adequacy criteria could 

fail in revealing faults that can be caught with functional 

criteria

• Typical case: missing path faults
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STRUCTURAL TEST DATA

• Create functional test suite first, then measure 

structural coverage to identify see what is missing

• Question to be discussed later:

• Can structural test generation be automated?

• Questions discussed now:

• Various coverage criteria
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STATEMENT TESTING

• Adequacy criterion: each statement (or node in the CFG) 

must be executed at least once 

• Coverage:

# executed statements

# statements

• Rationale: a fault in a statement can only be revealed by 

executing the faulty statement
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STATEMENTS OR BLOCKS?

• Nodes in a control flow graph often represent basic blocks 

of multiple statements

• Some standards refer to basic block coverage or node coverage

• Difference in granularity, not in concept
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EXAMPLE
 {char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {  

*dptr = ' ';

} 

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + 

digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

T0 = 

{“test”,

“test+case%1Dadequacy”}

17/18 = 94% Stmt Cov.

T1 = 

{“adequate+test%0Dexecuti

on%7U”}

18/18 = 100% Stmt Cov.

T2 = 

{“%3D”, “%A”, “a+b”,

“test”}

18/18 = 100% Stmt Cov.
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COVERAGE IS NOT SIZE

• Coverage does not depend on the number of test cases 

• T0 ,T1 : T1 >coverage T0 T1 <cardinality T0 

• T1 ,T2 : T2 =coverage T1 T2 >cardinality T1 

• Minimizing test suite size is seldom the goal

• small test cases make failure diagnosis easier

• a failing test case in T2 gives more information for fault 

localization than a failing test case in T1
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IS IT ENOUGH?

• Why statement coverage may not be adequate?

• Complete statement coverage may not imply executing all 

branches in a program.

• Construct an example program now in class to show it.
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x= 0; y > 1

x=10

ret x

Y
N



BRANCH TESTING

• Adequacy criterion: each branch (edge in the CFG) must be 
executed at least once 

• Coverage:

#  executed branches

# branches

T3 = {“”, “+%0D+%4J”} 

100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 = {“%3D”, “%A”, “a+b”, “test”}

100% Stmt Cov. 100% Branch Cov. (8/8 branches)
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STATEMENTS VS BRANCHES

• Traversing all edges of a graph causes all nodes to be visited

• So test suites that satisfy the branch adequacy criterion for a 

program P also satisfy the statement adequacy criterion for the 

same program

• The converse is not true 

• A statement-adequate (or node-adequate) test suite may not be 

branch-adequate (edge-adequate)
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“ALL BRANCHES” CAN STILL 
MISS CONDITIONS

• Sample fault: missing operator 

digit_high == 1 || digit_low == -1

• Branch adequacy criterion can be satisfied by varying only 

digit_low

• The faulty sub-expression might never determine the result

• We might never really test the faulty condition, even though we 

tested both outcomes of the branch
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EXAMPLE

• Condition  h == 1 ||  l == -1

• Suppose it is buggy

• Should be h == -1 || l == -1

• Achieve branch coverage

• < h == 0, l == 0>

• < h == 0, l == -1>

• Do not vary the faulty condition at all, and the variables involved!!
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BASIC CONDITION TESTING

• Adequacy criterion: 

• each basic condition must be executed at least once to true, and …

• at least once to false. 

• Coverage:

# truth values taken by all basic conditions

2 * # basic conditions
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BASIC CONDITIONS VS 
BRANCHES

• Basic condition adequacy criterion can be satisfied without satisfying 

branch coverage

Construct an example program now in class to show this claim.

Branch and basic condition are not comparable

(neither implies the other)
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a || b 

(a == 0, b ==1)

(a == 1, b == 0)



COVERING BRANCHES AND CONDITIONS

• Branch and condition adequacy: 

• cover all conditions and all decisions

• Compound condition adequacy:

• Cover all possible evaluations of compound conditions

• Cover all branches of a decision tree
digit_high == -1

digit_low == 1

true false

FALSE

TRUE

true false

FALSE
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COMPOUND CONDITIONS: 
EXPONENTIAL COMPLEXITY

(((a || b) && c) || d) && e

Test a b c d e 

(1) T — T — T

(2) F T T — T

(3) T — F T T

(4) F T F T T

(5) F F — T T

(6) T — T — F

(7) F T T — F

(8) T — F T F

(9) F T F T F

(10) F F — T F

(11) T — F F —

(12) F T F F —

(13) F F — F —
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MODIFIED CONDITION/DECISION 
(MC/DC)

• Motivation: Effectively test important combinations of 
conditions, without exponential blowup in test suite size 

• “Important” combinations means: Each basic condition shown 
to independently affect the outcome of each decision

• Requires:  

• For each basic condition C, two test cases,

• values of all evaluated conditions except C are the same

• compound condition as a whole evaluates to true for one and 
false for the other
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MC/DC: LINEAR COMPLEXITY

• N+1 test cases for N basic conditions

(((a || b) && c) || d) && e

Test a b c d e outcome

(1) true -- true -- true true

(2) false true true -- true true

(3) true -- false true true true

(6) true -- true -- false false

(11) true -- false false -- false

(13) false false -- false -- false

• Underlined values independently affect the output of the decision

• Required by the RTCA/DO-178B standard
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COMMENTS ON MC/DC

• MC/DC is 

• basic condition coverage (C)

• branch coverage (DC)

• plus one additional condition (M): 
every condition must independently affect the decision’s 
output

• It is subsumed by compound conditions and subsumes all 
other criteria discussed so far

• stronger than statement and branch coverage

• A good balance of thoroughness and test size  (and 
therefore widely used)

31



32

MC/DC – INDUSTRY STANDARD

• “Every point of entry and exit in the program has been invoked 

at least once, every condition in a decision in the program has 

taken all possible outcomes at least once, every decision in the 

program has taken all possible outcomes at least once, and 

each condition in a decision has been shown to independently 

affect the decision’s outcome. A condition is shown to 

independently affect a decision’s outcome by varying just that 

condition while holding fixed all other possible outcomes.”



PATH ADEQUACY

• Decision and condition adequacy criteria consider 

individual program decisions

• Path testing focuses consider combinations of decisions 

along paths

• Adequacy criterion: each path must be executed at least 

once 

• Coverage:

# executed paths

# paths
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PRACTICAL PATH COVERAGE 
CRITERIA

• The number of paths in a program with loops is unbounded 

• the simple criterion is usually impossible to satisfy

• For a feasible criterion:  Partition infinite set of paths into a 

finite number of classes

• Useful criteria can be obtained by limiting 

• the number of traversals of loops

• the length of the paths to be traversed

• the dependencies among selected paths
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SUMMARY

• We defined a number of adequacy criteria 

• Test-suite estimation, NOT test-suite construction

• Full coverage is usually unattainable

• Remember that attainability is an undecidable problem!

• …and when attainable, “test generation” is usually hard

• How do I find program inputs allowing to cover something buried 
deeply in the CFG?

• Automated support (e.g., symbolic execution) may be necessary

• Rather than requiring full adequacy, the “degree of adequacy” of a test suite 
is estimated by coverage measures

• May drive test improvement
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DATA FLOW TESTING

White-box testing

Coverage based on data-flow criteria
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MOTIVATION

• Middle ground in structural testing

• Node and edge coverage don’t test interactions

• Path-based criteria require impractical number of test cases

• And only a few paths uncover additional faults, anyway

• Need to distinguish “important” paths

• Intuition:  Statements interact through data flow

• Value computed in one statement, used in another

• Bad value computation revealed only when it is used
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RECAP: REACHING DEF.

x = .... 

if .... 

x = .... 

...

.... 

y = x + ... 

4

1

6

• Value of x at 6 could be 

computed at 1 or at 4

• Bad computation at 1 or 4 

could be revealed only if they 

are used at 6

• (1,6) and (4,6) are

def-use (DU) pairs

• defs at 1,4

• use at 6

2

3

5
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DEFINITION-CLEAR PATH

• 1,2,3,5,6 is a definition-clear 

path from 1 to 6

• x is not re-assigned between 1 

and 6

• 1,2,4,5,6 is not a definition-

clear path from 1 to 6

• the value of x is “killed” 

(reassigned) at node 4

• (1,6) is a DU pair because 

1,2,3,5,6 is a definition-clear 

path

x = .... 

if .... 

x = .... 

...

.... 

y = x + ... 

4

1

6

2

3

5
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ADEQUACY CRITERIA

• All DU pairs: Each DU pair is exercised by at least one 

test case

Corresponding coverage fractions can also be defined
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ALIASING

• x[i] = ... ; ... ; y = x[j]

• DU pair (only) if i==j

• p = &x ; ... ; *p = 99 ; ... ; q = x

• *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...); 

• Are m and n the same object?

• Do m and n share a “foo” field? 

• Problem of aliases: Which references are (always or 

sometimes) the same? 
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INFEASIBILITY

• Suppose cond has not 

changed between 1 and 5

• Or the conditions could be 

different, but the first implies the 

second

• Then (3,6) is not a (feasible) 

DU pair

• But it is difficult or impossible to 

determine which pairs are 

infeasible

• Infeasible test obligations are 

a problem

• No test case can cover them

if (cond)

x = .... 

...

.... 

y = x + ... 

3

1

2

4

if (cond)

.... 
6

5

7
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INFEASIBILITY

• The path-oriented nature of data flow analysis makes the 
infeasibility problem especially relevant

• Combinations of elements matter!

• Impossible to (infallibly) distinguish feasible from infeasible paths. 
More paths = more work to check manually.

• In practice, reasonable coverage is (often, not always) 
achievable
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SUMMARY

• Data flow testing attempts to distinguish “important” paths: 
Interactions between statements

• Intermediate between simple statement and branch coverage 
and more expensive path-based structural testing

• Cover Def-Use (DU) pairs: From computation of value to 
its use

• Intuition: Bad computed value is revealed only when it is used

• Levels: All DU pairs, all DU paths, all defs (some use)

• Limits: Aliases, infeasible paths

• Worst case is bad (undecidable properties, exponential 
blowup of paths), so pragmatic compromises are required
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MUTATION TESTING

Abhik Roychoudhury

National University of Singapore
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TEST-SUITE ESTIMATION

• Change the program slightly

• One line change to introduce an error.

• Called a Mutant program.

• Check if your test suite can “detect” the error

• At least one test fails.

• Decide if your test suite is “adequate”
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INADEQUATE TEST-SUITES

• Suppose, no test can kill a given mutant. 

• Why could this happen?

• Test suite does not check all behaviors?

• The mutant is semantically equivalent to the original program?

• Program equivalence checking – undecidable. 
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EXAMPLE - MUTANTS
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Input: a, index

1. base = a;

2. sentinel = base;

3. offset = index;

4. address = base + offset;

5. output address, sentinel

Input: a, index

1. base = a - 1;

2. sentinel = base;

3. offset = index;

4. address = base + offset;

5. output address, sentinel

Input: a, index

1. base = a;

2. sentinel = base;

3. offset = index - 1;

4. address = base + offset;

5. output address, sentinel



WHY MUTATE?

• Develop program P

• Come up with test suite T based on use-cases and your 
own intuition

• Test P against T, fix all failing tests.

• P now passes against T

• Take it for code review in your company.

• A comment from a colleague

• In line 75 in file xyz, shouldn’t we have 

sentinel = base+1
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HOW TO COUNTER SUCH 
COMMENTS?

• Depend on your reputation

• I have been coding for 25 years – I know what I did, program 

passed all tests !

• Connect it back to requirements –

• may be hard to do, as all program variables do not correspond 

to quantities mentioned in requirements.

• Submit the results from Mutation Testing
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MUTATION TESTING

• Develop program P and test-suite T.

• Generate all mutants of P automatically

• As per the given mutation operators of P, decided by the 

programming language.

• How many of the mutants are killed by T

• Mutation score = (# of killed mutants ) / (Total # of mutants)
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MUTATION SCORE

Mutation score = (# of killed mutants ) / (Total # of mutants)

Can modify it to

Mutation score =                                                                        

# of equivalent mutants cannot be found exactly – undecidable.

Can replace it with # of equivalent mutants found (using some 
heuristics, which must be incomplete).

52

#  of killed mutants

Total # of mutants - # of equivalent mutants
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public class Add {

public static int sum (int a, int b){

return a+b;

}

public static double sum (double a, double 

b){

return a+b;

}

public static long sum (long a, long b){

return a+b;

}

}

public class Add {

public static int sum(int a, int b) {

return ++a + b; }

public static double sum(double a, double b) {

return a + b; }

public static long sum(long a, long b) {

return a + b; }

}

public class Add {

public static int sum(int a, int b) {

return  a + b; }

public static double sum(double a, double b) {

return a + b; }

public static long sum(long a, long b) {

return --a + b;}

}

public class Add {

public static int sum(int a, int b) {

return a + b; }

public static double sum(double a, double b) {

return a - b; }

public static long sum(long a, long b) {

return a + b;}

}

TC1:

Add o = new Add();

print(o.sum(1,2));

print(o.sum(1.0,2.0));

MutationScore(TC1) = ?



LARGE NUMBER OF MUTANTS!

54

a - b > c            a * b > c            a / b > c

a % b > c          a > c                 b > c

abs(a) - b > c    a - abs(b) > c   a - b > abs(c)

abs(a - b) > c    0 - b > c           a - 0 > c

a - b >= c          a - b < c           a - b <= c

a - b = c            a - b != c          b - b > c

a - a > c            c - b > c           a - c > c

a - b > a            a - b > b           a - b > c

++a - b > c        a - ++b > c      a - b > ++c

--a - b > c          a - --b > c         a - b > --c

++(a - b) > c      --(a - b) > c     -a - b > c

a - -b > c           a - b > -c          (a - b) > c

a - b > 0           -abs(a) - b > c   a - -abs(b) > c

a - b > -abs(c)  -abs(a - b) > c   0 > c

a + b > c             42 mutants
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WEAK MUTATION

• Problem:  There are lots of mutants. Running each test case to 
completion on every mutant is expensive

• Number of mutants grows with the square of program size

• Approach: 

• Execute meta-mutant (with many seeded faults) together with 
original program

• Mark a seeded fault as “killed” as soon as a difference in 
intermediate state is found

• Without waiting for program completion

• Re-start with new mutant selection after each “kill”



USING COVERAGE 
INFORMATION

• Select only test cases which cover the changed code.

• For a test to kill a mutant

• It should execute the changed code  (E)

• Infect the program state  (I, typically achieved)

• Propagate the infection to program output (P)

• Without execution of changed code, no difference in behavior 
can be observed!
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USING COVERAGE 
INFORMATION
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int triangle(int a, int b, int c){

if (a <= 0 || b <=0 || c <= 0){

return 4;   // not  a triangle

}

if (!(a+b >c && a +c > b && b + c >a)){

return 4;   // not a triangle

}

if  (a == b && b == c){

return 1;  // equilateral

}

if (a == b || b == c || a == c){

return 2;  // isosceles

}

return 3;   // scalene

}

(0,0,0)

(1,1,3)

(2,2,2)

(2, 2,3)

(2,3, 4)

(0,1,1)

(4,3,2)

(1,1,1)

(2,3,2)

Only these tests execute mutants in this line



MUTATION TESTING 
ASSUMPTIONS

• Competent programmer hypothesis: 

• Programs are nearly correct 

• Real faults are small variations from the correct program

• => Mutants are reasonable models of real buggy programs

• Coupling effect hypothesis: 

• Tests that find simple faults also find more complex faults

• Even if mutants are not perfect representatives of real faults, 

a test suite that kills mutants is good at finding real faults too
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