TAINT ANALYSIS

CS3213 FSE

N Syl
" |]

National University of Singapore

CS3213 Copyright by Abhik Roychoudhury

WHAT WE DID EARLIER

System Requirements: Use-cases, Scenarios, Sequence Diagrams
System structure: Class diagrams

Discussion on semantics

System behavior: State diagrams

Discussion of the thinking behind your course project

Static analysis and vulnerability detection: Secure SE

Software Debugging

White-box Testing: estimation of a given test-suite

Today
Debugging and Fault Localization
Taint Analysis: effect of malicious inputs

CS3213 Copyright by Abhik Roychoudhury

TOPICS

Taint Analysis
Propagation of tainted inputs through the program
Through data flows — passing tainted value from one variable to another
Through implicit flows — a decision being made by a tainted value.
Can study data dependencies for this purpose
Why do we need taint analysis
To understand the impact of malicious inputs.

To “harden” programs against malicious inputs.

CS3213 Copyright by Abhik Roychoudhury G

DATA DEPENDENCY

Data dependence: t is dependent on s if
t uses a variable v which is defined in s

There is a definition-clear path w.r.t variable v (a path in which v
is not set) between s and t

Difference between static and dynamic data dependence is
implicit here.

Exercise in class: show variants of the above definition for
static and dynamic dependencies with suitable code examples

CS3213 Copyright by Abhik Roychoudhury

/** Euclid's algorithm */

public class GCD

DATA DEPENDENCE GRAPH s

public int gcd(int x, int y) {
int tmp; // A:defx,y, tmp
while (y!=0){ //B:usey

tmp=x%y; //C:deftmp;usex,y

X=vy; // D:defx;usey
. = tmp; // E:defy;use tm
A data dependence graph is: y o TR
return x; //F:usex
Nodes: as in the control flow graph (CFG))

Edges: def-use (du) pairs, labelled with the variable name

‘public int gedint x, int y) { G%

Int tmp;
T I ! |] ¥)
- }l‘ _.' Il:,:_'I :}r . }r____hx “‘\II
o 4 n . \ | Dependence
- (mp=x%y O, N | edges show this
|
| ~mp ! l | x value could be
=t ! ® X | the unchanged
s ‘ Ty | parameter or
|
Y v - v i v | could be set at
while (v 1=0 K=Y c
E (y1=0) @9 XZY [line D
N K
(return X;
CS3213 Copyright by Abhik Roychoudhury '\} °

STATIC & DYNAMIC DATA
DEPENDENCY

Data dependence:
t is dependent on s if t uses a variable v
which is defined in s

oo~ w NP
(i
o
D

orintf (“%d”, x);

CS3213 Copyright by Abhik Roychoudhury

There is a definition-clear path w.r.t
variable v (a path in which v is not set)
between s and t

Slicing Criterion

STATIC & DYNAMIC DATA
DEPENDENCY

Data dependence:
tis dependent on s if t uses a variable v
which is defined in s

i [@irE il
2 x=q.f; —
3 printf ("%d", x);

Slicing Criterion

There is a definition-clear path w.r.t
variable v (a path in which v is not set)
between s and t

p and q point to the same
object?

Static points-to analysis is always conservative

CS3213 Copyright by Abhik Roychoudhury

TAINT POLICY

Taint Introduction
All variables are, by default, untainted.
All inputs are tainted?
Taint propagation
Specified as rules.
Taint is simply a bit.
Taint Checking
When do you check?

For example, while going to an address, need to check whether
the address is tainted.

CS3213 Copyright by Abhik Roychoudhury

TAINTED JUMP POLICY

Protect from control flow hijacking

Inputs are tainted.

Propagate in a straightforward fashion
In a binary operation, taint the result if any operand is tainted
In assignment, taint the LHS if RHS is tainted.
What to do in the case of a branch?

Does not matter whether it is conditional or unconditional
branch

Check that the jump target is not tainted.

CS3213 Copyright by Abhik Roychoudhury

EXAMPLE

| x=2%*get_input();
2 y=5%x;
3 gotoy

Line |:Taint source, and propagation

Line 2: Taint propagation

Line 3:Taint sink and check

CS3213 Copyright by Abhik Roychoudhury

EXAMPLE IN ACTION

| x=27%get input();
2 y=5%x;
3 gotoy

Taint policy might be tainted jump policy.
Taint source is at get_input()
Taint propagation
RHS of line | is tainted.
LHS of line | is tainted, so x is tainted.
RHS of line 2 is tainted
LHS of line 2 is tainted, so y is tainted.

Taint check at line 3 --- control transfer to tainted address.

CS3213 Copyright by Abhik Roychoudhury

ADDRESS AND VALUE

| x=2%*get input();
2 y=5%x;
3 gotoy

When we say “x” is tainted
Do we mean the address of x is tainted?
Or the value in x is tainted?
Taint policies
Track the status of addresses and memory values separately.

The taint status of a pointer p, and the data object *p, are
independent.

CS3213 Copyright by Abhik Roychoudhury

UNDER-TAINTING

Example

| x = get_input();
2 y=load(z + x);
3 gotoy

Value of x is clearly tainted.
The address (z + x) is therefore tainted.

Value of y is NOT tainted, so jump in line 3 is allowed.

Untainted but attacker determined jump address!

CS3213 Copyright by Abhik Roychoudhury

OVER-TAINTING

Tainted address policy: A memory cell is tainted if either
address or value is tainted.

| x = get_input();
2 y=load(z + x);
3 gotoy

y is then always tainted and the jump is not allowed.

Imagine the actual code in tepdump program
Read network packet.
x = first byte of packet.
z = base address of function_pointer_table
y = function_pointer_table[z+x]

Go to function pointed by y

CS3213 Copyright by Abhik Roychoudhury

TAINT MARKERS

input a, b;
w =2 *a;
x=b+I;
y=w+tl;
Zz=xty;
output z;

Capturing tainted or non-tainted for each variable — one bit
information.

Instead can capture “taint markers” to explain the source
of taint.

Each variable gets associated with a set of taint markers,

could be {} Taint marker set for z = {t_, t,}

What is the taint marker set for y?

CS3213 Copyright by Abhik Roychoudhury

IMPLICIT FLOWS

A
= get_input();
If (x==1)go to 3 else go to 4;

Line 4 is not affected by tainted input value. Whatever be the value, z
is being set to 42.

CS3213 Copyright by Abhik Roychoudhury

CONTROL DEPENDENCE -
EXAMPLE

CS3213 Copyright by Abhik Roychoudhury

CONTROL DEPENDENCE

Data dependence:Where did these values come from!?

Control dependence:Which statement controls whether this
statement executes!?

Nodes: as in the CFG

Edges: unlabelled, from entry/branching points to controlled blocks

Fpublic int gcd(int x, int y) { @

Jnt tmp;)
J
| ¢ !
C.'.fhne (y 1= 0} (Eg |f?eturn X; @
- N Wy
A
s ™
) ¢ ,,
(Imp=x%y, @ @=tmp; @

hJ
=y 7
S o

CS3213 Copyright by Abhik Roychoudhury

DOMINATORS

Pre-dominators in a rooted, directed graph can be used to
make this intuitive notion of “controlling decision” precise.

Node M dominates node N if every path from the root to N
passes through M.

A node will typically have many dominators, but except for the root,
there is a unigue immediate dominator of node N which is closest to

N on any path from the root, and which is in turn dominated by all the
other dominators of N.

Because each node (except the root) has a unique immediate dominator,
the immediate dominator relation forms a tree.

Post-dominators: Calculated in the reverse of the control
flow graph, using a special “exit” node as the root.

CS3213 Copyright by Abhik Roychoudhury °

EXAMPLE OF DOMINATOR

A A pre-dominates all nodes; G
- ’ post-dominates all nodes
B F and G post-dominate E
Z g G is the immediate post-
C E dominator of B

C does not post-dominate B

B is the immediate pre-
dominator of G

F does not pre-dominate G

CS3213 Copyright by Abhik Roychoudhury @

CONTROL DEPENDENCE

We can use post-dominators to give a more precise definition of
control dependence:
Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property:

C has at least two successors in the control flow graph (i.e., it represents a control
flow decision);

C is not post-dominated by N
there is a successor of C in the control flow graph that is post-dominated by N.

When these conditions are true, we say node N is control-dependent on node
C.

Intuitively: C was the last decision that controlled whether N executed

CS3213 Copyright by Abhik Roychoudhury °

CONTROL DEPENDENCE -
EXAMPLE

CS3213 Copyright by Abhik Roychoudhury

STATIC CONTROL DEPENDENCIES

Post-dominated: |,] — nodes in Control Flow Graph

| is post-dominated by | iff all paths from | to EXIT pass through |

YES

NO

o e

CS3213 Copyright by Abhik Roychoudhury

STATIC CONTROL
DEPENDENCIES

| not post-dom by |

U,V post-dom by |
Control dependence

=y

D)

CS3213 Copyright by Abhik Roychoudhury

DYNAMIC CONTROL
DEPENDENCIES

X is dynamically control dependent onY if
Y occurs before X in the execution trace
X’s stmt. is statically control dependent on Y’s stmt.

No statement Z betweenY and X is such that X’s stmt. is statically control dependent on
Z’s stmt.

Captures the intuition:

What is the nearest conditional branch statement that allows X to be executed, in the
execution trace under consideration.

CS3213 Copyright by Abhik Roychoudhury

STATIC VS. DYNAMIC DATA
DEPENDENCE

1p.f = 1;

2 x=q.f;, — p and g point to
3printf (“%d”, x); the same object?

Slicing Criterion

Static points-to analysis is always conservative

CS3213 Copyright by Abhik Roychoudhury @

STATIC VS. DYNAMIC CONTROL

DEPENDENCE
input n; !
if (n>0][| n<-10){ []
S [] B2
} Yes No
[]B3
--------------------------- Yes No

Static control dependence
B2 -> B4
B3 -> B4
Dynamic control dependence

One of these, depending on value of n

CS3213 Copyright by Abhik Roychoudhury

DYNAMIC SLICING FOR
DEBUGGING : RECAP

Instrument
I a&l’race

Dynamic
Slicing

Dynamic Slice =
Bug Report

__

CS3213 Copyright by Abhik Roychoudhury

BACK TO AN EXAMPLE

1 void foo(int a){ Inputa==1
2 int X, y

3 if (@ > 10){

4 x =1,

5 } elsg{

6 R= 2

7 }

8 y = 10§

9 print X,

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.
The output for x is thus tainted with {t,}

Dynamic tainting with implicit flows

CS3213 Copyright by Abhik Roychoudhury

EXAMPLE (HARD)

1 void foo(int a){ Input a ==

2 int X, y

3 if (&> 10){

4 x=1:

5 } elsg{

6 X =2; Source:

7 } Dytan: A Generic Dynamic Taint Analysis
8 y = 108 Framework, by Clause, Li and Orso, ISSTA
9 print X 2007, see LumiNUS for web-link.

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.
The output for x is thus tainted with {t;}

Dynamic tainting with implicit flows

CS3213 Copyright by Abhik Roychoudhury @

REMOVING TAINT

More and more variables get tainted as
Execution trace is analyzed — dynamic taint analysis

Program is analyzed — static taint analysis

Taint markers are simply added, never removed?
Considerb =a -a;
If a is tainted, b should also be tainted?
But if a has no overflows etc, b is always zero

In general, operations which return constant results should not
be tainted.

CS3213 Copyright by Abhik Roychoudhury °

REAL EXAMPLES

static int amd8lllle read phy(..)

t -—
reg val = readl (mmio + PHY ACCESS);
while (£83 val & PHY CMD ACTIVE)

14

. if (pas model = pas read (0xFF88))
AMD 8111e Network Driver - -

char temp[100];
sprintf (temp, “%s rev %d”,

pas_model names|[(int) pas model],
pas_read (0x2789)) ;

}

Pro Audio Sound Driver

CS3213 Copyright by Abhik Roychoudhury Q

READINGS

All you ever wanted to know about dynamic taint analysis

and forward symbolic execution (but might have been
afraid to ask)

Schwartz, Avgerinos, Brumley

Oakland 2010

Supplementary reading

Dytan: A generic dynamic taint analysis framework
Clause, Li, Orso,

ISSTA 2007.

CS3213 Copyright by Abhik Roychoudhury

