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WHAT WE DID EARLIER

System Requirements: Use-cases, Scenarios, Sequence Diagrams
System structure: Class diagrams

Discussion on semantics

System behavior: State diagrams

Discussion of the thinking behind your course project

Static analysis and vulnerability detection: Secure SE

Software Debugging

White-box Testing: estimation of a given test-suite

Today
Debugging and Fault Localization
Taint Analysis: effect of malicious inputs
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TOPICS

Taint Analysis
Propagation of tainted inputs through the program
Through data flows — passing tainted value from one variable to another
Through implicit flows — a decision being made by a tainted value.
Can study data dependencies for this purpose
Why do we need taint analysis
To understand the impact of malicious inputs.

To “harden” programs against malicious inputs.
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DATA DEPENDENCY

Data dependence: t is dependent on s if
t uses a variable v which is defined in s

There is a definition-clear path w.r.t variable v (a path in which v
is not set) between s and t

Difference between static and dynamic data dependence is
implicit here.

Exercise in class: show variants of the above definition for
static and dynamic dependencies with suitable code examples
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/** Euclid's algorithm */

public class GCD

DATA DEPENDENCE GRAPH s

public int gcd(int x, int y) {
int tmp; // A:defx,y, tmp
while (y!=0){ //B:usey

tmp=x%y; //C:deftmp;usex,y

X=vy; // D:defx;usey
. = tmp; // E:defy;use tm
A data dependence graph is: y o TR
return x; //F:usex
Nodes: as in the control flow graph (CFG) )

Edges: def-use (du) pairs, labelled with the variable name

‘public int gedint x, int y) { G%

Int tmp;
T I ! | ] ¥ )
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o 4 n . \ | Dependence
- (mp=x%y O, N | edges show this
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| ~mp ! l | x value could be
=t ! ® X | the unchanged
s ‘ Ty | parameter or
|
Y v - v i v | could be set at
while (v 1=0 K=Y c
E (y1=0) @9 XZY [ line D
N K
(return X;
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STATIC & DYNAMIC DATA
DEPENDENCY

Data dependence:
t is dependent on s if t uses a variable v
which is defined in s

oo~ w NP
(i
o
D

orintf (“%d”, x);
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There is a definition-clear path w.r.t
variable v (a path in which v is not set)
between s and t

Slicing Criterion




STATIC & DYNAMIC DATA
DEPENDENCY

Data dependence:
tis dependent on s if t uses a variable v
which is defined in s

i [@irE il
2 x=q.f; —
3 printf ("%d", x);

Slicing Criterion

There is a definition-clear path w.r.t
variable v (a path in which v is not set)
between s and t

p and q point to the same
object?

Static points-to analysis is always conservative
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TAINT POLICY

Taint Introduction
All variables are, by default, untainted.
All inputs are tainted?
Taint propagation
Specified as rules.
Taint is simply a bit.
Taint Checking
When do you check?

For example, while going to an address, need to check whether
the address is tainted.
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TAINTED JUMP POLICY

Protect from control flow hijacking

Inputs are tainted.

Propagate in a straightforward fashion
In a binary operation, taint the result if any operand is tainted
In assignment, taint the LHS if RHS is tainted.
What to do in the case of a branch?

Does not matter whether it is conditional or unconditional
branch

Check that the jump target is not tainted.

CS3213 Copyright by Abhik Roychoudhury



EXAMPLE

| x=2%*get_input();
2 y=5%x;
3 gotoy

Line |:Taint source, and propagation

Line 2: Taint propagation

Line 3:Taint sink and check
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EXAMPLE IN ACTION

| x=27%get input();
2 y=5%x;
3 gotoy

Taint policy might be tainted jump policy.
Taint source is at get_input()
Taint propagation
RHS of line | is tainted.
LHS of line | is tainted, so x is tainted.
RHS of line 2 is tainted
LHS of line 2 is tainted, so y is tainted.

Taint check at line 3 --- control transfer to tainted address.
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ADDRESS AND VALUE

| x=2%*get input();
2 y=5%x;
3 gotoy

When we say “x” is tainted
Do we mean the address of x is tainted?
Or the value in x is tainted?
Taint policies
Track the status of addresses and memory values separately.

The taint status of a pointer p, and the data object *p, are
independent.
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UNDER-TAINTING

Example

| x = get_input();
2 y=load(z + x);
3 gotoy

Value of x is clearly tainted.
The address (z + x) is therefore tainted.

Value of y is NOT tainted, so jump in line 3 is allowed.

Untainted but attacker determined jump address!
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OVER-TAINTING

Tainted address policy: A memory cell is tainted if either
address or value is tainted.

| x = get_input();
2 y=load(z + x);
3 gotoy

y is then always tainted and the jump is not allowed.

Imagine the actual code in tepdump program
Read network packet.
x = first byte of packet.
z = base address of function_pointer_table
y = function_pointer_table[z+x]

Go to function pointed by y
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TAINT MARKERS

input a, b;
w =2 *a;
x=b+I;
y=w+tl;
Zz=xty;
output z;

Capturing tainted or non-tainted for each variable — one bit
information.

Instead can capture “taint markers” to explain the source
of taint.

Each variable gets associated with a set of taint markers,

could be {} Taint marker set for z = {t_, t,}

What is the taint marker set for y?
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IMPLICIT FLOWS

A
= get_input();
If (x==1)go to 3 else go to 4;

Line 4 is not affected by tainted input value. Whatever be the value, z
is being set to 42.
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CONTROL DEPENDENCE -
EXAMPLE
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CONTROL DEPENDENCE

Data dependence:Where did these values come from!?

Control dependence:Which statement controls whether this
statement executes!?

Nodes: as in the CFG

Edges: unlabelled, from entry/branching points to controlled blocks

Fpublic int gcd(int x, int y) { @

Jnt tmp; )
J
| ¢ !
C.'.fhne (y 1= 0} (Eg |f?eturn X; @
- N Wy
A
s ™
) ¢ ,,
(Imp=x%y, @ @=tmp; @

hJ
=y 7
S o

CS3213 Copyright by Abhik Roychoudhury



DOMINATORS

Pre-dominators in a rooted, directed graph can be used to
make this intuitive notion of “controlling decision” precise.

Node M dominates node N if every path from the root to N
passes through M.

A node will typically have many dominators, but except for the root,
there is a unigue immediate dominator of node N which is closest to

N on any path from the root, and which is in turn dominated by all the
other dominators of N.

Because each node (except the root) has a unique immediate dominator,
the immediate dominator relation forms a tree.

Post-dominators: Calculated in the reverse of the control
flow graph, using a special “exit” node as the root.

CS3213 Copyright by Abhik Roychoudhury °



EXAMPLE OF DOMINATOR

A A pre-dominates all nodes; G
- ’ post-dominates all nodes
B F and G post-dominate E
Z g G is the immediate post-
C E dominator of B

C does not post-dominate B

B is the immediate pre-
dominator of G

F does not pre-dominate G
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CONTROL DEPENDENCE

We can use post-dominators to give a more precise definition of
control dependence:
Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property:

C has at least two successors in the control flow graph (i.e., it represents a control
flow decision);

C is not post-dominated by N
there is a successor of C in the control flow graph that is post-dominated by N.

When these conditions are true, we say node N is control-dependent on node
C.

Intuitively: C was the last decision that controlled whether N executed

CS3213 Copyright by Abhik Roychoudhury °



CONTROL DEPENDENCE -
EXAMPLE
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STATIC CONTROL DEPENDENCIES

Post-dominated: |,] — nodes in Control Flow Graph

| is post-dominated by | iff all paths from | to EXIT pass through |

YES

NO

o e
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STATIC CONTROL
DEPENDENCIES

| not post-dom by |

U,V post-dom by |
Control dependence

=y

D)
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DYNAMIC CONTROL
DEPENDENCIES

X is dynamically control dependent onY if
Y occurs before X in the execution trace
X’s stmt. is statically control dependent on Y’s stmt.

No statement Z betweenY and X is such that X’s stmt. is statically control dependent on
Z’s stmt.

Captures the intuition:

What is the nearest conditional branch statement that allows X to be executed, in the
execution trace under consideration.
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STATIC VS. DYNAMIC DATA
DEPENDENCE

1p.f = 1;

2 x=q.f;, — p and g point to
3printf (“%d”, x); the same object?

Slicing Criterion

Static points-to analysis is always conservative
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STATIC VS. DYNAMIC CONTROL

DEPENDENCE
input n; !
if (n>0][| n<-10){ [ ]
S [ ] B2
} Yes No
[ ]B3
--------------------------- Yes No

Static control dependence
B2 -> B4
B3 -> B4
Dynamic control dependence

One of these, depending on value of n
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DYNAMIC SLICING FOR
DEBUGGING : RECAP

Instrument
I a&l’race

Dynamic
Slicing

Dynamic Slice =
Bug Report

____________________________________________________________________________
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BACK TO AN EXAMPLE

1 void foo(int a){ Inputa==1
2 int X, y

3 if (@ > 10){

4 x =1,

5 } elsg{

6 R= 2

7 }

8 y = 10§

9 print X,

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.
The output for x is thus tainted with {t,}

Dynamic tainting with implicit flows
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EXAMPLE (HARD)

1 void foo(int a){ Input a ==

2 int X, y

3 if (&> 10){

4 x=1:

5 } elsg{

6 X =2; Source:

7 } Dytan: A Generic Dynamic Taint Analysis
8 y = 108 Framework, by Clause, Li and Orso, ISSTA
9 print X 2007, see LumiNUS for web-link.

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.
The output for x is thus tainted with {t;}

Dynamic tainting with implicit flows
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REMOVING TAINT

More and more variables get tainted as
Execution trace is analyzed — dynamic taint analysis

Program is analyzed — static taint analysis

Taint markers are simply added, never removed?
Considerb =a -a;
If a is tainted, b should also be tainted?
But if a has no overflows etc, b is always zero

In general, operations which return constant results should not
be tainted.
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REAL EXAMPLES

static int amd8lllle read phy(..)

t -—
reg val = readl (mmio + PHY ACCESS);
while (£83 val & PHY CMD ACTIVE)

14

. if (pas model = pas read (0xFF88))
AMD 8111e Network Driver - -

char temp[100];
sprintf (temp, “%s rev %d”,

pas_model names|[ (int) pas model],
pas_read (0x2789)) ;

}

Pro Audio Sound Driver
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READINGS

All you ever wanted to know about dynamic taint analysis

and forward symbolic execution (but might have been
afraid to ask)

Schwartz, Avgerinos, Brumley

Oakland 2010

Supplementary reading

Dytan: A generic dynamic taint analysis framework
Clause, Li, Orso,

ISSTA 2007.

CS3213 Copyright by Abhik Roychoudhury



